
Chapter 4: Linear approximation and applications
These are just summaries of the lecture notes, and not all details are included. Most of what we
include here is to be found in more detail in Anton (that is Anton, Bivens and Davis).

Remark 4.1 The linear approximation formula arises from the definition of the derivative of a
function y = f(x) at a point x = a:

lim
x→a

f(x)− f(a)

x− a
= f ′(a)

It follows that for x near a (but x 6= a),

f(x)− f(a)

x− a
∼= f ′(a)

Multiply across by x− a and rearrange to get

f(x) ∼= f(a) + f ′(a)(x− a) x near a

This is the linear approximation formula.
y = f(a) + f ′(a)(x − a) is the equation of a line with slope f ′(x) and (x, y) = (a, f(a))

is one point on the line. It is the equation of the tangent line to the graph y = f(x) at the point
where x = a.

Graphically, the linear approximation formula says that the graph y = f(x) is close to the
graph of its tangent line y = f(a) + f ′(a)(x − a) if we stay near to the point of tangency
(x, y) = (a, f(a)).

Examples 4.2 (i) Find the linear approximation to y = sin x centered at x = 0.

Solution: this means to work out f(x) ∼= f(a)+f ′(a)(x−a) with f(x) = sin x and a = 0.
Result comes out as sin x ∼= x (for small x).

(ii) Find
√

9.02 approximately using linear approximation.

Solution: This means we use f(x) =
√

x and a = 9 in the linear approximation formula.
We end up with

√
x ∼=

√
9 +

1

2
√

9
(x− 9) = 3 +

1

6
(x− 9)

for x near 9 and so
√

9.02 ∼= 3+1
6
(0.02) = 3.00333̇. (Calculator give

√
9.02 = 3.003331484.)

Note: This type of example is not very important, but they are easy exercises to get used to
the formula.

Remark 4.3 Why is the linear approximation formula good?
We saw that sin x ∼= x for x small, but presumably sin x is also not so far from 2x when x is

small. What makes sin x ∼= x superior?
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To answer this we go back to the derivation of the linear approximation formula and redo it
so as to avoid making any approximation until the end.

lim
x→a

f(x)− f(a)

x− a
= f ′(a)

It follows that for x near a (but x 6= a),

f(x)− f(a)

x− a
= f ′(a) + E(x)

(where E(x) is just the difference between the the other two things). We know that E(x) is small
if x is close to a (and x 6= a).

Multiply across by x− a and rearrange to get

f(x) = f(a) + f ′(a)(x− a) + E(x)(x− a)

In the linear approximation formula, we discard E(x)(x − a) and this is small for two reasons.
For x near a, E(x) is small and so is x − a. We are throwing away something that is small
compared to the already small x− a when we say

f(x) ∼= f(a) + f ′(a)(x− a) (x near a).

No other line has the properties that

• exactly matches y = f(x) at x = a;

• difference small compared to x− a for x near a.

Another way to explain what is good about linear approximation is to use a more sophisti-
cated fact, Taylor’s theorem or Taylor’s formula for the remainder. (This has been mentioned in
1S1 already.) It says that

f(x) = f(a) + f ′(a)(x− a) +
f ′′(c)

2!
(x− a)2

for some c between a and x. This needs f ′′ to make sense, but if we know that f ′′(c) cannot be
too large, no matter where c is in the range between a and x, this tells us that E(x)(x − a) =
f ′′(c)

2!
(x−a)2 is at its biggest proportional to (x−a)2. If x−a is small, then (x−a)2 is even smaller.

For example if x−a = 0.1, then (x−a)2 = 0.01. If x−a = 0.01 then (x−a)2 = 0.0001 = 10−4.

Remark 4.4 Importance of the linear approximation.
The real significance of the linear approximation is the use of it to convert intractable (non-

linear) problems into linear ones (and linear problems are generally easy to solve).
For example the differential equation for the oscillation of a simple pendulum works out as

d2θ

dt2
= −g

`
sin θ
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where θ = θ(t) is the angle of the pendulum from the vertical at time t. g is the acceleration due
to gravity (about 9.81m/s2 at sea level) and ` is the length of the pendulum.

This is a nonlinear equation and solutions cannot be written down in any simple way.
If we assume that θ(t) is always small (pendulum does not swing too wildly) then we can say

sin θ ∼= θ and the differential equation is approximately

d2θ

dt2
= −g

`
θ

This equation is linear and is relatively easy to solve. All the solutions are of the form

θ(t) = C1 cos kt + C2 sin kt

where C1 and C2 can be any constants and k =
√

g/`.
Of course this is only approximately right, but the approximation turns out to be very accurate

in this case.

Relative Errors 4.5 If we measure (or compute) a quantity where the ‘true’ or ‘correct’ answer
is x but we get a slightly different answer x̃ (maybe because of inaccuracies in an experiment or
because we made some rounding errors in the calculation) then the error is the difference

error = x− x̃ = (true value)− (approximate value)

Normally we don’t worry about the sign and only concentrate on the magnitude or absolute
value of the error. In order to asses the significance of the error, we have to compare it to the size
of the quantity x.

The relative error is a more significant thing:

relative error =
error

true value
=

(true value)− (approximate value)
true value

=
x− x̃

x

It expresses the error as a fraction of the size of the thing we are aiming at. 100 times this give
the percentage error.

Example 4.6 Suppose we use 22
7

as an approximation to π. Then the relative error is

relative error =
(true value)− (approximate value)

true value
=

π − 22
7

π
= 0.000402

or 0.04%.

Condition Numbers 4.7 We can use linear approximation to understand the following problem.
Say we measured x but our answer was x̃ and then we compute with that to try to find

f(x) (some formula we use on our measurement). If there are no further approximation in the
calculation we will end up with f(x̃) instead of f(x). How good an approximation is f(x̃) to the
correct value f(x)?
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We assume that x̃ is close to x and so linear approximation should be valid. We use the linear
approximation formula

f(x) ∼= f(a) + f ′(a)(x− a) x near a

with x replaced by x̃

f(x̃) ∼= f(a) + f ′(a)(x̃− a) x̃ near a

and then a replaced by x

f(x̃) ∼= f(x) + f ′(x)(x̃− x)

So the final error

(true value)− (approximate value) = f(x)− f(x̃) ∼= f ′(x)(x− x̃)

Notice that x− x̃ is the error in the initial measurement and so we see that the derivative f ′(x) is
a magnifying factor for the error.

But we are saying above that relative errors are more significant things than actual errors. So
we recast in terms of relative errors. The relative error in the end (for f(x)) is

f(x)− f(x̃)

f(x)
∼=

f ′(x)

f(x)
(x− x̃)

To be completely logical, we should work with the relative error at the start x−x̃
x

instead of the
actual error x− x̃. We get

f(x)− f(x̃)

f(x)
∼=

xf ′(x)

f(x)

x− x̃

x

or

relative error in value for f(x) =
xf ′(x)

f(x)
(relative error in value for x)

Thus the relative error will be magnified or multiplied by the factor xf ′(x)
f(x)

and this factor is called
the condition number.

In summary

condition number =
xf ′(x)

f(x)

Examples 4.8 (i) Find the condition number for f(x) = 4x5 at x = 7.

xf ′(x)

f(x)
=

x(20x4)

4x5
=

20x5

4x5
= 5.

So in this case it does happens not to depend on x.
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(ii) Use the condition number to estimate the error in 1/x if we know x = 4.12± 0.05.

If we take f(x) = 1/x we can work out its condition number at x = 4.12:

xf ′(x)

f(x)
=

x
(−1

x2

)
1
x

=
−1
x
1
x

= −1

This means it does not depend on 4.12 in fact.

Now our initial value x = 4.12± 0.05 means we have a relative error of (at most)

±0.05

4.12
∼= ±0.012

The relative error in f(4.12) = 1/(4.12) is then going to be about the same (because the
condition number is −1 and this multiples the original relative error). So we have, using
x̃ = 4.12 as our best approximation to the real x,

f(x̃) =
1

x̃
=

1

4.12
= 0.242718

and this should have a relative error of about 0.012. The magnitude of the error is therefore
(at worst) about (0.012)(0.242718) = 0.0029 or about 0.003. So we have the true value of

1

x
= 0.242718± 0.003 or, more realistically 0.0243± 0.003

(no point in giving the 718 as they are not at all significant).

(iii) f(x) = ex. Condition numbers at x = 10/3 is xf ′(x)/f(x) = xex/ex = x = 10/3 =
3.3333̇. So if we use x̃ = 3.33 instead of x = 10/3 we would have a relative error to begin
with

relative error in x =
10
3
− 3.33
10
3

= 0.001

(that is an error of 0.1%). If we now compute e3.33 while we ought to have computed
e10/3 we will have a relative error about 10/3 times larger (the condition number is 10/3, or
roughly 3). So we will end up with a 0.3% error. In other words, still quite small.

If instead we were working with x = 100/3 and we took x̃ = 33.3, we would have the
same initial relative error

relative error in x =
100
3
− 33.3
100
3

= 0.001

but the condition number for ex is now x ∼= 33. The error in using e33.3 where we should
have had e100/3 will be a relative error about 33 times bigger than the initial one, or 33 ×
0.001 = 0.033. This means a 3.3% error (not very large perhaps, but a lot larger than the
very tiny 0.1% we began with.

In fact e33.3 = 2.89739× 1014 and 3.3% of that is 9.56137× 1012.
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(iv) For f(x) = x2 − 10x + 11, find the condition number at x = 10.

Answer:
xf ′(x)

f(x)
|x=10=

100

11
∼= 9.

Root finding methods 4.9 We look into some methods for finding solutions of equations, some-
thing that is often required. We will look at two fairly basic methods, the bisection method and
Newton’s method.

These are approximate methods, capable of finding solutions to equations f(x) = 0 to any
desired number of decimal places, but they never give and exact answer (except by a fluke).

Unlike quadratic equations ax2 + bx + c = 0 (with a 6= 0 to make it genuinely quadratic),
where we have a formula for the solutions

x =
−b±

√
b2 − 4ac

2a

we rarely are in a position to find an exact formula for a solution of an equation f(x) = 0 (if
f(x) is at all complicated, and real practical problems tend to be complicated).

For example, consider
x = cos x

There is no formula for the solutions of this. To make it fit our methods we should write it as

x− cos x = 0

so that it is f(x) = 0 with f(x) = x− cos x.
A question that might arise is this: How can we know there are solutions of an equation

where we don’t have a formula? Sometimes there will not be any. For example, even in the case
of quadratic equations, there might be none if we insist on looking for real number solutions and
b2 − 4ac < 0. (There are complex number solutions in this case.)

With x − cos x = 0 we can convince ourselves graphically that there are solutions. That is,
we can use the Intermediate Value Theorem (which we saw earlier in Chapter 3, but here it is
again).

Theorem 4.10 (Intermediate Value Theorem) If y = f(x) is continuous for all x in the finite
closed interval [a, b] and if f(a) and f(b) have opposite signs (a short way to write that is
f(a)f(b) < 0) then there must be some c ∈ (a, b) with f(c) = 0.

Bisection Method 4.11 The bisection method is a basic method, which is less labour intensive
than accurately plotting the graph (and reading off the x values where the graph crosses y = 0 as
you did in school).

It is an approximation method, which will never get the exact answer (except by accident)
but it can get the answer to any desired accuracy (or any number of decimal places) if used for
long enough.

It is a method for locating roots of an equation f(x) = 0. To start it, we need a range
a ≤ x ≤ b where f(x) is continuous and where f(x) changes sign. So assume f(a)f(b) < 0
(meaning that the signs of y = f(a) and y = f(b) are opposite.
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Basic step: Look at the mid point x = c =
a + b

2
. If f(a)f(c) < 0 then there is a root in the

interval (a, c). If not, then f(c)f(b) ≤ 0 and there is a root in [c, b).
Having a root exactly at x = c = (a + b)/2 is essentially impossible (it could happen by a

fluke).
So the result of this basic step is to find that y = f(x) has a root in either one of the two

intervals [a, c] or [c, b].
Method. Replace the original interval [a, b] by the half where there is a sign change and

repeat the basic step.
Keep repeating until the root is located within a sufficiently small tolerance.

Example 4.12 For the equation cos x = x, use the bisection method to locate a root.
Solution: We have to have an equation f(x) = 0 and so take f(x) = cos x− x.

We can start with [a, b] = [0, 1] because f(0) = 1 > 0 while f(1) = cos 1 − 1 =
−0.459698 < 0 (remember radians). f(x) is continuous on [0, 1] (in fact everywhere).

Using the method 10 times we would get the following intervals

[0.5, 1], [0.5, 0.75], [0.625, 0.75], [0.6875, 0.75],
[0.71875, 0.75], [0.734375, 0.75], [0.734375, 0.742188], [0.738281, 0.742188],

[0.738281, 0.740234], [0.738281, 0.739258]

(Each time the interval shortens by half. We could continue to get it even shorter.)
Here is the graph in this case, so you can see what is going on.

Newtons Method 4.13 This is another method aimed at finding solutions to equations f(x) = 0
approximately. It has a more sophisticated idea behind it and generally works very well. How-
ever, it is not guaranteed to work (as the bisection method is). Newtons method uses linear
approximation (and so requires f ′(x) to exist).

To begin with we assume we have a rough idea where there is a solution. We call this our
initial guess and write x = x0 for this value of x. (The effect of a bad or wild guess is often not
serious. Typically a better guess will save effort and get to the answer more quickly, but there
are cases where a bad guess will just not work. In those cases, you discover that the guess is bad
as you go along. There are some cases where the method won’t work, even with a pretty good
guess.)

The idea behind the method is as follows. We have no formula for a solution of the correct
equation f(x) = 0. (If we had a formula, we could just use it.) But linear equations are easy
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to solve. So we replace the correct equation f(x) = 0 by its linear approximation centered at
x = x0. That is we solve

f(x0) + f ′(x0)(x− x0) = 0

f ′(x0)(x− x0) = −f(x0)

x− x0 = − f(x0)

f ′(x0)

x = x0 −
f(x0)

f ′(x0)

This is not likely to be the correct solution of the real equation f(x) = 0 but the idea is that it
should be a ‘better guess’ than x = x0 was. We put

x1 = x0 −
f(x0)

f ′(x0)

as an improved guess.
Then we repeat the idea starting with x = x1 where we had x = x0 and we get a further

‘improved’ guess

x2 = x1 −
f(x1)

f ′(x1)

Then we go again, and again. We get a sequence of improved guesses x = x1, x = x2, . . . ,
where each new guess xn+1 is related to the previous one by

xn+1 = xn −
f(xn)

f ′(xn)
(n = 0, 1, 2, . . .) (1)

Here is a graphical view of what happens. f(x) = cos x− 3x2, x0 = 0.2, x1 = 0.814918 and
x2 = 0.582355 in this example.

If we ever reached a true solution f(xn) = 0 and then xn+1 = xn. This is most unlikely, but
typically we end up with xn+1

∼= xn for a fairly small n. xn+1
∼= xn then means

f(xn)

f ′(xn)
∼= 0 ⇒ f(xn) ∼= 0

So the method is
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(i) Start with a guess x = x0 of the solution of f(x) = 0

(ii) Find x1, x2, . . . using (1) until the values stabilise. When they stabilise we are pretty much
at a solution.

(If they don’t stabilise, try starting again with another guess.)

Example 4.14 For the equation cos x = x, use Newtons method to locate a root.
Solution: We have to have an equation f(x) = 0 and so take f(x) = cos x− x.

We know (or can rediscover easily) from the Intermediate Value Theorem that there is a root
in the range 0 < x < 1. A reasonable guess then is the mid point x0 = 0.5. (We could do better
because of our earlier work with the example, but let’s forget that work for now.)

Here are the values that result
n xn

1 0.755222
2 0.739142
3 0.739085
4 0.739085

We see that in a very few steps we have an answer that seems accurate to 5 places of decimals.
We can calculate f(x4) = f(0.739085) = 2.2295× 10−7. So we seem to be pretty close.

Mathematica can work this out for us if we want it to.

f[x_] = Cos[x] - x
g[x_] = x - f[x]/f’[x]
x0 = 0.5
Do[Print[i, " , ", x0= g[x0]], {i, 1, 5}]

Here we just gave it the formulae from the method and then the Do command tells it to work
out the new values of x (or new guess) 5 times. The Print command is so we can get it to tell
us the values as it goes along. The idea of x0 = g[x0] is that we keep calling the new value
x0. This is easier to program and saves computer memory because we don’t need the old values
again. Here is the output:

1 , 0.755222
2 , 0.739142
3 , 0.739085
4 , 0.739085
5 , 0.739085

Richard M. Timoney February 5, 2007


