
Chapter 3. Graphing, maxima and minima
Most of this material is covered in Anton (Anton, Bivens & Davis).

These notes are not complete and skip some of the explanations from the lectures.
We begin with some important theorems about continuous functions. In one way they seem

almost obvious, but they are not really obvious. An explanation for this statement is that the
proofs of the theorems are quite complex (and beyond this course).

A theorem is a mathematical version of a law of nature, like Newtons Laws or Boyle’s law.
To say the theorem is true means that it is a rule (like a law of nature) that is always obeyed, a
conclusion that is always true provided we are in the circumstances given. A proof is a reason
why the theorem as stated has to be true. In mathematics we reason our way from the hypotheses
to the conclusion. By contrast, in science laws are generally formulated as a result of many
observations and then validated by comparing them with experimental results.

We start by recalling the definition of a continuous function, which you should recall from
course 1S1.

3.1 Definition. Suppose that S ⊂ R is a set and f : S → R is a function with domain S. We say
that f is continuous at a point x0 ∈ S if

lim
x→x0

f(x) = f(x0)

We say f is continuous (on S) if it is continuous at each point x0 ∈ S.

If we want to be fussy, we should take care of end points of S in a different way.
Interpreting the definition literally, continuity at the point x0 says that if we change x from

x0 by a little, then f(x) will only change a little from f(x0). It would seem normal that a tiny
change in x should make only a small difference to the value f(x), but there are examples where
that is not the case.

Generally we explain the meaning of the term continuous like this. We say that a function
is continuous if you can draw its graph without lifting your pen. In fact this is a somewhat
incomplete way of saying what a continuous function is, but it at least fits with the word. It also
fits with the fact that there are examples of functions that are not continuous because they have
jumps in them.

Here is one such example.

3.2 Example. Say we want to define the sign of a number x as a function. We might define it
like this. The function sgn : R → R is given by the rule

sgn(x) =


1 if x > 0

−1 if x < 0
0 if x = 0

In one way the example might seem odd, but if you think about it a little it makes reasonable
sense. Certainly the sign of a positive number should be + and so having the value +1 = 1
seems right. And for x negative it is also reasonable to have the sign be −1. As for the sign of 0,
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we could maybe argue that it has no sign, or we could include it as positive. What we have done
here is use a compromise value 0 (which we could interpret as no sign). In fact, no matter what
we do, if we give any meaning to sgn(0), the example will still be not continuous at 0.

The reason is that
lim
x→0

sgn(x)

does not exist because

lim
x→0+

sgn(x) = 1, lim
x→0−

sgn(x) = −1.

We know that if the (ordinary two-sided) limit as x → 0 did exist then the two one-sided limits
would have to be the same. As they are different there is no (two-sided) limit.

You can see from the graph that changing x ever so slightly from x = 0 will change the value of
sgn(x) abruptly (from 0 to 1 or −1).

This function is not continuous at 0 (and so not continuous overall).

3.3 Examples. Despite the example we just saw, most functions you can write down by a formula
are continuous (as long as we avoid dividing by zero). So polynomial functions like

f(x) = 3x2 − 11x + 12

g(x) = −31x3 + x2 + 5x + 77

h(x) = = x4 − x2 + x− 3

are continuous. We know enough about limits to know that limx→x0 f(x) = f(x0) for every
x0 ∈ R. That is we find the limit as x → x0 in this case by plugging in x = x0.

For the other examples g(x) and h(x) we can say the same. So all are continuous (everywhere
on their domain R.)
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3.4 Theorem (Intermediate Value Theorem). If y = f(x) is continuous for all x in the finite
closed interval [a, b] and if f(a) and f(b) have opposite signs (a short way to write that is
f(a)f(b) < 0) then there must be some c ∈ (a, b) with f(c) = 0.

3.5 Remark. An actual proof of that is beyond us. A proof would be an argument to show that
in any example whatever of a continuous function where the assumption that f(a) and f(b) have
opposite signs, we can be sure that the conclusion will hold.

However, we can try to explain what the theorem says, and this is always the first step in
going about a proof. We have to consider a totally unknown function y = f(x). We have to have
two things true about it, first that it is continuous (for every single x in the interval a ≤ x ≤ b)
and second that the signs of f(a) and f(b) are opposite. Try to think of a complicated picture (or
graph). Here is one fairly random picture.

We started with f(a) < 0 and drew a graph ending up with f(b) > 0. So the graph started below
the x-axis and ended up above it. The theorem just says that we have to cross the axis somewhere
along the way.

Seems obvious?
Well, look back at the graph of the sgn function and shift it down by 1/2. Take f(x) =

sgn(x) − 1/2 for −1 ≤ x ≤ 1. We would start at y = −3/2 and end at y = 1/2. But there is
nowhere where f(x) = 0. Why not? Well we allowed a jump in the graph at x = 0, that is a
discontinuity. Just one point where the graph is not continuous and the conclusion of the theorem
does not hold.

Maybe a slight less artificial looking example is f(x) = 1/(x − 1), a = 0 and b = 2. We
have f(a) = f(0) = −1 < 0 and f(b) = f(2) = 1 > 0. But there is nowhere where we can
say f(x) = 0 because 1

x−1
6= 0. This f(x) is continuous everywhere it makes sense. The only

problem is that it fails to make sense at x = 1, which is one point in between a and b.
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These examples might make you wonder if the theorem is really obvious. It is more or less
obvious if you believe the pictorial interpretation that a continuous function is one where you
can draw the graph without lifting your pen.

The picture has to be interpreted carefully because the graph y = 1/(x − 1) which we drew
above is continuous and yet you need to draw the bit with x < 1 and the part with x > 1
separately. So you do have to lift your pen, but that is kind of explained because x = 1 is not
included.

The definition of what a continuous function is, the one with limits, seems far from what we
say about drawing the graph. The Intermediate Value Theorem is really a part of the justification
for the thing about not lifting your pen.

We will come back to using the Intermediate Value Theorem in a reasonably practical way to
guarantee that certain equations have solutions.

Our next big theorem is another justification for the assertion that continuous functions have
graphs that can be drawn without lifting your pen (at least if we stick to intervals as the domain).

3.6 Max and min points. A point x = c is an absolute maximum point for the function y = f(x)
if f(c) ≥ f(x) for every x in the domain of f .

A point x = c is an absolute minimum point for the function y = f(x) if f(c) ≤ f(x) for
every x in the domain of f .

It is quite easy to understand the importance of finding these points. If we imagine that f(x)
is the cost of building something and x is a parameter that can be controlled, then it would be
natural to want to minimise the cost by choosing the most efficient x. For other problems, you
might want to choose x so as to get the most out if f(x) represents output.

You can also imagine problems where there is more than one thing to vary. That would
amount to a function of more than one variable and this is beyond us in this course.

3.7 Theorem. If f(x) is continuous for every point x in a finite closed interval a ≤ x ≤ b (or
we could just write, “for all x ∈ [a, b]” to put it more succinctly), then f(x) has an absolute max
point and an absolute min point on [a, b].

The theorem is quite difficult to prove, but it is quite useful. It says that certain max-min
problems have a solution. The fact that there is a solution is a help because of the ‘needle in
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the haystack’ analogy. If you are searching for a needle in a haystack, you have a hard job. But
if you are not sure whether there is one or not, you could be searching for ever and not know
whether you might find the answer if you persevere or whether there is no answer.

The method we will use for finding the max and min points will rely on calculus and also a
concept that is weaker than absolute max (or min) points.

3.8 Definition. Let y = f(x) be a function. Then a point x = c is a local max point (or relative
max point) for f(x) if f(c) ≥ f(x) for all x nearby c

[Technically, we should say f(c) ≥ f(x) for all x within some positive distance of c on either
side of c]

A point x = c is called a local min point (or a relative min point) for f(x) if f(c) ≤ f(x) for
all x nearby c.

3.9 Examples. (i) Consider this example graph: y = f(x) = x3 − 2x2 + x + 1/2 for −1 ≤
x ≤ 2

Absolute max at x = 2 (an end point, not a local max by our definition because we insisted
on f(c) ≥ f(x) for all x near c on either side of c).

Local max at x = 1/3 (not so easy to see for sure where it is, but we will check this).

Absolute min x = −1, local min x = 1 (again not quite clear).

Notice that the theorem applies, but the absolute max and min points are at the endpoints

If we look at the sign of dy/dx = f ′(x) = 3x2 − 4x + 1 = (3x − 1)(x − 1) we can work
out that f ′(x) > 0 for x < 1/3 and also for x > 1. In between, in 1/3 < x < 1, f ′(x) < 0.
We conclude then that the graph is increasing for x < 1/3 (in fact even for x ≤ 1/3),
decreasing on the interval 1/3 ≤ x ≤ 1 and increasing again for x ≥ 1. This way we can
justify the statements about the local min and local max points.

(ii) f(x) = 1
x

0 < x < 1
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In this graph there is no max. The theorem does not apply because the interval is not closed
(the endpoints are not included). The graph also has no minimum because the point x = 1
is not included (and you could argue that this is the result of a somewhat artificial restriction
on x).

3.10 Definition. A critical point for a function y = f(x) is a values of x where f ′(x) = 0.

3.11 Theorem. Suppose y = f(x) has a local max (or min) at x = c. If f is differentiable at
x = c and x = c is an interior point of the domain of f (that is not an end point) then f ′(c) = 0.

Proof. We will include a proof for the local max case. The local min case is quite similar.
We know from the definition that

f ′(c) = lim
h→0

f(c + h)− f(c)

h

We also know that when we have a (two-sided) limit like this, then we also have one-sided limits
that turn out to be the same limit f ′(c). So f ′(c) is equal to the right sided limit:

f ′(c) = lim
h→0+

f(c + h)− f(c)

h

Assuming x = c is a local max, we know that f(c) ≥ f(x) when x is nearby c. That means for
h near 0 we have f(c) ≥ f(c + h) and so f(c + h)− f(c) ≤ 0. When we take h > 0 small, we
then get

f(c + h)− f(c)

h
≤ 0

Taking the limit as h → 0+, we see

f ′(c) = lim
h→0+

f(c + h)− f(c)

h
≤ 0.
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On the other hand f ′(c) is also the left sided limit

f ′(c) = lim
h→0−

f(c + h)− f(c)

h

We can still argue as before that f(c+h)− f(c) ≤ 0 when h is small. However when h < 0 and
small, dividing by h reveres the inequality and so we get

f(c + h)− f(c)

h
≥ 0

(for h < 0 and small). Taking the limit as h → 0− we see

f ′(c) = lim
h→0−

f(c + h)− f(c)

h
≥ 0.

From one direction we concluded f ′(c) ≤ 0 and from the other f ′(c) ≥ 0. The only way to
reconcile these two is to have f ′(c) = 0.

[Notice that we needed to use both sides to get the conclusion. That is why we need to be at
an interior point.]

The modifications needed to show that f ′(c) = 0 at local min points that are interior points
are as follows. We have f(c) ≤ f(c + h) for h small, and so f(c + h)− f(c) ≥ 0. Thus

f(c + h)− f(c)

h
≥ 0 for h > 0 small

and so f ′(c) = limh→0+(f(c + h)− f(c))/h ≥ 0. Working on the other side (as h → 0−) we get
f ′(c) ≤ 0. Thus, again f ′(c) = 0.

3.12 Sign of the derivative. We know that if y = f(x) is a function that has a derivative (we
call this a differentiable function) then the value f ′(a) of the derivative at a point x = a is the
slope of the tangent line to the graph y = f(x) at the point on the graph where x = a (which is
the point (x, y) = (a, f(a))).

If f ′(a) > 0 is positive, then the tangent line is sloping upwards there, but we cannot conclude
much from knowing the sign of the derivative at one point. We can however conclude something
if we know that f ′(x) > 0 is an interval of values of x.

3.13 Definition. Let f : S → R be a function defined on a domain S ⊂ R. Then f(x) is called
increasing if whenever x1 < x2 (with x1, x2 ∈ S) then f(x1) < f(x2).

A way to think about this is to say that if you move left to right on the graph y = f(x), you
always end up at a higher point than where you started.

3.14 Example. Consider the function f(x) = −1/x, a function which naturally makes sense for
all x 6= 0. So we should take S = {x ∈ R : x 6= 0} (every x except x = 0) and define f : S → R
by the rule f(x) = −1/x.

We can compute f ′(x) = 1/x2 and we see that it is always positive. However, if we look
at the graph, we can see that the function is not increasing overall. Look at x1 = −1, x2 = 1,
where x1 < x2 but f(x1) = 1 > f(x2) = −1.
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What we see in the next theorem is that this kind of example happens because of the gap at
x = 0 (which allows the graph to jump down in this case).

3.15 Theorem. If y = f(x) is differentiable (f ′(x) exists) for all x in an interval and if f ′(x) > 0
for all x in the interval, then f(x) is increasing on that interval.

Although this may seem reasonably obvious, the previous example shows that it is not so
obvious. We need the assumption about intervals for it to be true.

It can be proved to be correct using a theorem called the Mean Value Theorem (for deriva-
tives). We will come back to explain that soon. For now, we will consider the link in the other
direction.

3.16 Proposition. If f is increasing on an interval and f ′(x) exists, then f ′(x) ≥ 0.

This Proposition is much easier to prove. It is not quite a converse of the Theorem because
of the greater than or equal (where there was f ′(x) > 0 in the theorem).

We will not give the relatively easy proof of the Proposition in full detail, but it is basically a
consequence of the definition of the derivative

f ′(x) = lim
h→0

f(x + h)− f(x)

h
= lim

h→0+

f(x + h)− f(x)

h

When h > 0, x + h > x and so f(x + h) > f(x) by the increasing property. So

f(x + h)− f(x)

h
> 0.

When h → 0+, the limit of this could be 0 but it cannot be negative. So f ′(x) ≥ 0.
If we change the perspective slightly from increasing in the strict sense to non-decreasing

functions, we can get exactly converse statements.

• For f : S → R a function on S ⊂ R, f if called non-decreasing is whenever x1, x2 ∈ S
and x1 < x2, then f(x1) ≤ f(x2)
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• If f ′(x) ≥ 0 on an interval, then f is non-decreasing on that interval

• If f is non-decreasing and differentiable, then f ′(x) ≥ 0.

3.17 Corollary. Assume f is a differentiable function. Then the intervals where f ′(x) ≥ 0 are
the intervals where f(x) is increasing.

We can define decreasing and non-increasing by reversing the inequalities we had before.
f is decreasing if whenever x1 < x2 are in the domain of f , then f(x1) > f(x2). It is non-
increasing if f(x1) ≥ f(x2) holds for any two points x1 and x2 in the domain with x1 < x2.

Where f(x) is decreasing, −f(x) is increasing.
Applying the foregoing to −f(x) in place of f(x) we find:

3.18 Corollary. The intervals where f ′(x) ≤ 0 are intervals where f(x) is non-increasing.

3.19 Examples. 1. Find the intervals where f(x) = 3x2 + 4x − 5 is increasing and the
intervals where it is decreasing.

2. Find the intervals where f(x) = x3 − 2x2 + x + 1
2

is increasing and the intervals where it
is decreasing.

3. Find the intervals where f(x) =
5x− 8

(x− 2)2
is increasing and the intervals where it is de-

creasing.

3.20 Max and min points problems. Where the problem (can be a practical problem) involves
finding the largest value of a continuous function f(x) on a finite closed interval a ≤ x ≤ b and
we assume f ′(x) exists at all interior points of the interval, the following method will work:

• Find all critical points (solutions of f ′(x) = 0) in the interval.

Typically just a few points c1, c2, . . .

• Compare values f(x) at the end points and at the critical points. f(a), f(b), f(c1), f(c2), . . ..

Largest of these is the largest value (absolute max) — and the smallest of these is the
absolute min.

3.21 Examples. (i) Find the largest value of f(x) = 3x4 − 8x3 − 48x2 + 4 for 0 ≤ x ≤ 5.

(ii) A farmer wants to fence off a rectangular paddock in the middle of a big field. He has 20
metres of fencing to use. What dimensions should the paddock be if the area is to be as
large as possible?

We will now go back to something promised earlier, an account of the Mean Value Theorem
and what it has to do with showing that a function that has positive derivative on an interval is an
increasing function on that interval.

Recall again that a theorem is like a law of nature (or Physics or Chemistry or Biology) —
some fact that is always true in a certain situation. In Science, you check out a law by checking
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that it is valid in many experiments. In mathematics we use a different method, of giving an
incontrovertible line of reasoning to show that any time we are in a certain situation we must
have the stated conclusion.

Our first step towards the Mean Value Theorem is a theorem which is fairly surprising because
it seems we assume very little. The fact that we can make any conclusion about all functions or
graphs that satisfy these few assumptions is maybe surprising.

3.22 Theorem (Rolle’s Theorem). Suppose y = f(x) is a continuous function on a finite closed
interval a ≤ x ≤ b and that f ′(x) exists for each x in the open interval a < x < b. Suppose also
that f(a) = f(b).

Then there must be some point c in the open interval (that is with a < c < b) where f ′(c) = 0.

If you try to picture what this says, it is that if we have a graph that starts and ends at the
same level y = f(a) = f(b), then the graph must have a horizontal tangent somewhere along the
way.

There are some other assumptions about the graph being continuous on the closed interval
and differentiable on the open interval. These are pretty mild assumptions, at least for us. Most
functions we deal with are continuous and differentiable anyhow, but we do see functions with
bad points here and there. What is important here is that the bad points are not included between
x = a and x = b.

You could perhaps try to convince yourself that the theorem is true by trying to draw graphs
that start and end at the same level (or height y). Continuous means that you are not allowed
to lift your pen while doing the drawing. Differentiable is a bit harder, but it rules out sharp
corners in the graph (like an angle). Maybe if you try drawing such a graph (remember graphs
can’t double back on themselves) and look at what you have drawn, you will see a point with a
horizontal tangent line.

You can’t really convince anyone with pictures like this. Perhaps you are deliberately not
drawing the kind of situation where the conclusion is false. So here is a proof, though it is based
on something quite difficult that we did not prove (Theorem 3.7).

Proof. Start with any function y = f(x) that satisfies the 3 assumptions (1) continuous a ≤ x ≤
b, (2) differentiable a < x < b, and (3) f(a) = f(b).

From Theorem 3.7, we can say there is an absolute max xM and an absolute min xm. So
these are points a ≤ xM ≤ b and a ≤ xm ≤ b which satisfy

f(xm) ≤ f(x) and f(x) ≤ f(xM) for each x with a ≤ x ≤ b.

Now we can almost use Theorem 3.11 (which we did pretty much prove) to say that f ′(c) = 0
for c = xM . Well, not quite because xM could be one of the endpoints x = a or x = b and then
Theorem 3.11 won’t apply to it.

However, we could equally use Theorem 3.11 on c = xm — unless that is also an end point.
But if both xM and xm is an end point then the largest value of y = f(x) coincides with the

smallest because f(a) = f(b). That means we have a constant function (neither goes above not
goes below y = f(a) = f(b)). Constant functions have derivative 0 everywhere, and so in this
case we can choose any c between a and b to get f ′(c) = 0.
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What we have is a reason to see that no matter what, there has to be a c with f ′(c) = 0. So
we have proved the theorem.

The Mean Value theorem seems better than Rolle’s theorem because there is no longer the
need to assume f(a) = f(b). But what could be say about any old graph (continuous a ≤ x ≤ b
and differentiable a < x < b)? We cannot say it must have a horizontal tangent because the
graph could be the straight line joining the start point to the end point. The start point is where
x = a and y = f(a). The end point is where x = b and y = f(b). The slope of the line joining
these two points is

m =
f(b)− f(a)

b− a

(by the formula for the slope of the line through 2 points). So for the straight line graph, the
tangent always has this slope m.

The theorem says that every other graph has to have this slope somewhere.

3.23 Theorem (Mean Value Theorem (for derivatives)). Suppose y = f(x) is a continuous
function on a finite closed interval a ≤ x ≤ b and that f ′(x) exists for each x in the open interval
a < x < b.

Then there is some c with a < c < b (so in the open interval) where

f ′(c) =
f(b)− f(a)

b− a
.

Perhaps we won’t go into a proof of this. You can look in the book by Anton for a proof.
In fact the Mean Value theorem includes Rolle’s theorem (because if f(a) = f(b) then the

Mean Value Theorem says just the same as Rolle’s theorem: f ′(c) = 0).
What is maybe a surprise is that the proof of the Mean Value theorem is a little trick to reduce

back to the case of Rolle’s theorem. What you do is look at

g(x) = f(x)−m(x− a)

where m is the slope (f(b) − f(a))/(b − a). Notice that it works out that g(a) = f(a) and
g(b) = f(a) also. Rolle’s theorem says there is a c with g′(c) = 0 (when we apply it to G, bot to
f ). Since g′(x) = f ′(x)−m, this is pretty much the whole proof of the Mean Value Theorem.

3.24 Example. Suppose you drive from Dublin to Cork, a distance of 288km and it takes you 5
hours. Then, on average you will have travelled at 288/5 = 57.6km/h. The Mean Value theorem
says that there must have been some instant when your speed was exactly this 57.6km/h.

To see why it says that, let x = x(t) be the distance you have travelled t hours from the start
of your trip. Then x(0) = 0 (at the start you have not gone any of the distance). Assuming we
measure distance in kilometres, we have x(5) = 288. The Mean Value theorem says there must
be some c between 0 and 5 where

x′(c) =
x(5)− x(0)

5− 0
=

288

5
= 57.6



12 2006–07 Mathematics 1S3 (Timoney)

But x′(t) represents your speed at instant t. So at the instant t = c, the speed was 57.6 km/h.
Now, perhaps this is kind of common sense. You could (theoretically maybe) have gone an

exact 57.6km/h the whole way. Or you could have gone more slowly some of the time. But if
you were going more slowly for a while, you must have gone faster some other time to make up
for lost average speed. And when speeding up or slowing down from less that 57.6 to more (or
vice versa) there will be an instant where your speed is exactly 57.6.

Now here is the promised use of the Mean Value Theorem to prove the earlier theorem.

Proof. (of Theorem 3.15) Take x1 and x2 in the interval where f ′(x) > 0 with x1 < x2. In the
Mean Value theorem, take a = x1 and b = x2.

We have to be sure we can apply the Mean Value Theorem. We need f(x) continuous a ≤
x ≤ b, but this is true because we have f(x) differentiable on some interval that includes both a
and b. So we have f also continuous on that interval. Then the interval a ≤ x ≤ b is smaller. We
also need f ′(x) to exist for a < x < b, but we know that because we are assuming f ′(x) exists
on a bigger interval.

So the Mean Value theorem assures of there is some c with a < c < b and

f ′(c) =
f(b)− f(a)

b− a

We don’t have any idea where c is, except we know a < c < b. But wherever it is between a and
b, we know f ′(c) > 0. So we know we have to have

f(b)− f(a)

b− a
> 0

Remember a = x1 and b = x2. So what we have is actually the same as saying

f(x2)− f(x1)

x2 − x1

> 0.

Since x1 < x2, we have x2 − x1 > 0 and therefore we know

f(x2)− f(x1) > 0,

which is the same as f(x1) < f(x2).
We started with any x1 and x2 (in the interval) where x1 < x2. We were able to conclude that

f(x1) < f(x2) is always true. That is what it mens to say that f is increasing.

3.25 First derivative test. Aim: If x = c is a critical point of y = f(x), decide if it is a local
max, a local min or neither.

Test:

• If f ′(x) > 0 for all x < c close to c and f ′(x) < 0 for all x > c close to c (that is if f ′(x)
changes sign from + to − at x = c) then x = c is a local max.

• If f ′(x) changes sign from − to + at x = c, x = c is a local min.
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• If f ′(x) has the same sign for all x on either side of c (close to c) then x = c is neither a
local max nor a local min.

3.26 Examples. (i) A farmer wants to fence off a rectangular paddock along the side of a big
field. He will use existing fencing for one side of the paddock and new fencing for the other
3 sides. What dimensions should the paddock be if the area is to be 100 m2 and the farmer
wants to use as little fencing as possible?

(ii) A company wants to make milk cartons in the shape of a box. The cartons are to be one
litre in volume. The distribution department insists that the length of the cartons should be
5/4 times the width. (Ignoring folds or other complicating factors) what dimensions should
the cartons be so as to minimize the surface area (corresponding to the area of cardboard
used in each carton).

3.27 Sign of the second derivative. If a function y = f(x) is differentiable everywhere (or for
every x where it is defined) then we end up with a new function dy

dx
= f ′(x), the derivative.

It is perfectly possible that this new function can also be differentiated, leading to a derivative
of a derivative

d

dx
(f ′(x)) =

d

dx

(
dy

dx

)
If this makes sense it is called the second derivative of f and it denoted f ′′(x) or d2y

dx2 .
As a simple example, say y = f(x) = 4x3 + 2x2 − x + 12. Then dy/dx = f ′(x) =

12x2 + 4x− 1 and the derivative of that again is

d2y

dx2
= f ′′(x) = 24x + 4.

Once we are happily able to differentiate functions given by more or less any formula, we can
get a formula for the derivative, and then we can also differentiate that again to get the second
derivative.

We had a graphical interpretation of the first derivative f ′(a) as the slope of the tangent line,
but we do not have such a simple interpretation of the second derivative. However we can figure
out what the sign of f ′′(x) means graphically. At least we can if we have the same sign on an
interval of x’s.

Remember that f ′′(x) is the derivative of something. It is the derivative of f ′(x). So, applying
what we found out above, if something has a positive derivative on an interval, it means that that
thing is increasing.

So, if f ′′(x) = d
dx

(f ′(x)) > 0 on an interval, we can say that f ′(x) is increasing on that
interval. If we think about it, we can interpret this graphically. f ′(x) is the slope of the tangent
line to the graph. So f ′′(x) > 0 on an interval means that the slope of the tangent line to the
graph increases as we step from left to right in that interval.

Thinking about what it means for one line to have greater slope than another, we can say that
f ′(x) increasing means that the tangent line twists in the anticlockwise direction as we go from
left to right. In terms of the graph this means that the graph is bending towards the upwards side.
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It does not have to do with whether the graph is actually sloping up or down, only about which
way it is curving or bending.

To say y = f(x) is concave up on an interval, means that the slope of the graph is increasing
on that interval.

A more geometric way to express it is this: all chords of the graph lie above the graph.
Concave down is the opposite.

3.28 Theorem. Provided we restrict to f where f ′′(x) exists, the intervals where f ′′(x) ≥ 0 are
the intervals where the graph y = f(x) is concave up.

The intervals where f ′′(x) ≤ 0 are the intervals where the graph y = f(x) is concave down.

3.29 Definition. A point x = c on a graph y = f(x) where the graph changes from concave up
to concave down (or vice versa, from concave down to concave up) is called a point of inflection.

In practice these are points where f ′′(x) changes sign.

3.30 Example. For the graph y = x4−2x3−120x2 +5x−11, find the intervals where the graph
is concave upwards and the intervals where it is concave downwards.

We need to examine the sign of d2y/dx2 and so we need to work it out first.

dy

dx
= 4x3 − 6x2 − 240x + 5

d2y

dx2
= 12x2 − 12x− 240

= 12(x2 − x− 20)

= 12(x− 5)(x + 4)

We can work out the sign of this if we know the sign of each factor. The factors have a chance to
change sign when one of them is 0, that is at x = −4 or x = 5.

x < −4 −4 < x < 5 5 < x
x + 4 − + +
x− 5 − − +

d2y
dx2 = 12(x− 5)(x + 4) + − +

y concave up concave down concave up

In summary the graph is concave up on the interval (−∞,−4] and again on the interval
[5,∞). It is concave down on [−4, 5].

In the graph shown below, you can certainly see the concave down section fairly clearly, but
the concave up sections look nearly straight.
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3.31 Second derivative test. Aim: Decide if a critical point x = c (i.e. f ′(c) = 0) is a local max
or min.

Test: (Technically we need f ′′(x) to exist and be continuous at c for this test.)

• If f ′′(c) > 0 (note: consequently the graph is concave up near c as well as having a
horizontal tangent line) then x = c is a local min

• If f ′′(c) < 0 then x = c is a local max

• If f ′′(c) = 0 then no conclusion can be made (without further information)

Examples to show this: f(x) = x3 and f(x) = x4 and c = 0. (In both cases f ′(c) = 0
[so we are at a critical point] and also f ′′(c) = 0 [so we are in the case where the second
derivative test fails]. In the case of y = x3 there is neither a relative maximum nor a
relative minimum, while in the case y = x4 there is a relative minimum at x = 0. In the
case y = x4, the second derivative d2y/dx2 = 12x2 does not change sign at x = 0 and so
0 is not a point of inflection.)

3.32 Graphing. To make a graph of a function y = f(x) that is “true to the function” we should
include the main features of the graph (or we could focus deliberately on one part of the graph if
our aim is to highlight one feature).

The overall features to show would normally be:

• points where the graph crosses either axis (x = 0 and y = 0)

• critical points (points where f ′(x) = 0)

These will include the local max and local min points.

• points of inflection (f ′′(x) = 0 and changes sign)
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• long run behaviour of the graph if it can be indicated by asymptotes, a concept which we
will now explain.

3.33 Asymptotes. Asymptotes are straight lines that indicate the long run behaviour of certain
graphs. They are not actually part of the graph but they can help describe graphs.

Asymptotes can be vertical, horizontal or oblique (means nonzero slope) lines.

3.34 Vertical Asymptotes. A graph y = f(x) has the line x = a as a vertical asymptote if either

lim
x→a+

|f(x)| = ∞ or lim
x→a−

|f(x)| = ∞

Usually they occur where a denominator of y = f(x) is zero (the only catch is that sometimes the
formula can be simplified so that the denominator is not zero there — if that is going to happen
then the original numerator is zero as well as the denominator).

3.35 Examples. 1. y = x
x−1

Vertical asymptote at x = 1

2. y = x2−x
x2−3x+2

Seems to have vertical asymptotes at x = 1 and x = 2, but the numerator x2 − x is also 0
at x = 1. This means we can simplify

y =
x2 − x

x2 − 3x + 2
=

x(x− 1)

(x− 1)(x− 2)
=

x

x− 2

and only x = 2 is a vertical asymptote. Here is the graph with the vertical asymptote.

3.36 Horizontal Asymptotes. A graph y = f(x) has the horizontal line y = y0 as an asymptote
if

lim
x→+∞

f(x) = y0 or lim
x→−∞

f(x) = y0
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3.37 Example. y = x
x−2

Here
lim

x→±∞
y = lim

x→±∞

1

1− 2/x
= 1

and so the line y = 1 is an asymptote (which is horizontal). Here is the graph with both the
horizontal asymptote and the vertical one.

3.38 Oblique Asymptotes. A graph y = f(x) has the (sloping or oblique) line y = mx + c as
an asymptote if

lim
x→+∞

f(x)− (mx + c) = 0 or lim
x→−∞

f(x)− (mx + c) = 0

These usually happen where the degree of the numerator (meaning, the highest power of x
present after multiplying out and simplifying) is one higher than the degree of the denomina-
tor.

Notice that the idea is that the graph y = f(x) follows the line very closely in the far distance
— as was the case with the other kinds of asymptotes.

3.39 Example. y = 3x2+x−2
x+2

.
Looking at highest powers in numerator and denominator, which will outweigh the other

terms for |x| large, we see that y is roughly 3x2

x
= 3x. Check

lim
x→±∞

3x2 + x− 2

x + 2
− 3x = lim

x→±∞

−5x− 2

x + 2

= lim
x→±∞

−5− 2/x

1 + 2/x
= −5

We see then that if we subtract the −5,

lim
x→±∞

3x2 + x− 2

x + 2
− (3x− 5) = 0

and the asymptote is y = 3x− 5.
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3.40 Symmetry. Sometimes graphs have a symmetry that can help with graphing.
For example if y = f(x) is an even function (meaning f(−x) = f(x)) then the graph is

symmetrical in the y-axis.
Examples of even graphs are y = 16x4 − 3x2 + 121 (only even powers) or y = cos x.
For odd functions (means f(−x) = −f(x)) the graph y = f(x) will be symmetrical in the

origin.
Examples are y = 21x5 + 16x3 − 15x (only odd powers) y = sin x (sin(−x) = − sin x is

true for every x) and y = tan x.

Richard M. Timoney March 7, 2007


