
Chapter 2. Mathematical appendix

In this appendix to the Mathematica notes, we look into a few mathematical points that arose in
the Mathematica examples but may not be familiar.

2.19 Remarks. By a function f from one set A of objects to another B, we mean any clearly
defined rule that associates one and only one element of B to each element of A. If a ∈ A (read
“a is an element of A”) then we denote by f(a) the element of B that f associates to a.

The set A is called the domain of the function.
We will mostly deal with the case where A, B ⊂ R, that is they are sets of numbers, and very

often the function will be specified by giving a formula for the value f(x) in terms of x. For
example we could have f(x) = x2 +1, meaning that (say) when x = 5, f(x) = f(5) = 52 +1 =
26. That is the function f associates the number 26 to x = 1.

A good way to picture a function is via its graph y = f(x). To be more exact, if f : A → B
where A and B are sets of numbers, then when we plot the graph we plot all the points (x, y) in
the plane where x ∈ A. Typically we end up with a curve, though in complicated examples we
could end up with several disjointed curves.

Notice that a graph of a function is a ‘curve’ in the plane with the property that each vertical
line crosses it at most once.

f(x)

x

y = f(x)

1

We can think of x on the horizontal axis (where we envisage the domain) and the corresponding
value y = f(x) as lying on the vertical axis. Sometimes it is useful to think of an arrow from
the domain x to y = f(x) as indicated. The function or rule is all the arrows together, telling us
where each x ends up.

The (vertical) line x = x0 crosses the graph (once) if x0 ∈ A = the domain of f . If the
domain A is smaller than the whole real line, then there will be vertical lines that miss the graph.

2.20 Intervals. In many cases we will be dealing with functions f : A → B where the sets A
and B are intervals. Here we will review the notation for intervals.
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If a, b ∈ R and a ≤ b, then the closed interval with end points a and b is the set of all real
numbers between a and b inclusive of the end points:

[a, b] = {x ∈ R : a ≤ x and x ≤ b} = {x ∈ R : a ≤ x ≤ b}

The open interval between a and b is

(a, b) = {x ∈ R : a < x < b}

There are various infinite intervals (no endpoint on one side or the other) and we use the
notations ∞ and −∞ as convenient replacements for the missing endpoints to the right or left.
We do not mean to imply that there are any numbers ∞ or −∞.

Here are the semi-infinite open and closed intervals (a, b ∈ R) and the notations we use

[a,∞) = {x ∈ R : a ≤ x}
(a,∞) = {x ∈ R : a < x}

(−∞, b] = {x ∈ R : x ≤ b}
(−∞, b) = {x ∈ R : x < b}

Note the convention that round brackets (or parentheses) are used for end points that are not
included in the set. If all (finite) end points are included we refer to the interval as closed. If no
finite intervals are included we call the interval open. So [a,∞) and (−∞, b] are closed, while
(a,∞) and (−∞, b) are open. There is one doubly infinite interval

(−∞,∞) = R

and it counts as both open and closed.
There remain two other types of intervals we may encounter once or twice, the half-open and

half-closed intervals (which are neither open nor closed)

[a, b) = {x ∈ R : a ≤ x < b}
(a, b] = {x ∈ R : a < x ≤ b}

where we restrict to a < b.
Technically we could allow a = b in the case [a, b] but [a, a] = {a} is just a one-point set and

this will either be a very simple case or a case we will not want to consider in future theorems.
The case (a, a) is the empty set and we will probably never want to consider that.

2.21 Examples. Consider the function f : R → R with f(x) = x2.
We may sometimes wish to discuses the same function x2 but concentrate on a range of

values of x like 0 ≤ x ≤ 1 and then we are dealing with a different function g : [0, 1] → R given
by the same formula g(x) = x2.

Another type of example is a function given by a rule like f(x) = 1/x which clearly does not
make sense for x = 0 (when we would be trying to divide by 0). So the natural thing is to just
make that restriction and consider f : {x ∈ R : x 6= 0} → R given by f(x) = 1/x. Here we have
strayed outside having the domain A being an interval. {x ∈ R : x 6= 0} = (−∞, 0) ∪ (0,∞) is
a union of two intervals.
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2.22 Remark. In section 2.10 we saw how to use the Plot[ ] command in Mathematica
to draw graphs. Notice that we have to specify the domain (the range of x) for the graph, and
Mathematica will try to understand if there are values of x where the formula given does not
make sense (say Plot[1/x, {x, -1, 1}] for example).

However, there are curves that are not graphs (for example a circle where there are vertical
lines that cross the graph more than once). We can use parametric equations to describe such
graphs.

2.23 Parametric curves. One way to think of parametric curves is to imagine the process of
drawing it. As you draw the curve (on a pieces of paper marked with a horizontal and a vertical
axis) the tip of the pen will have a position at any given time.

We have to idealise a little to a ‘very’ sharp pen which covers just one point at a time and
then the point will have position (x, y) described by two coordinates. However, the coordinates
x and y of the pen will change as you move the pen and so we need to describe how they change
with time. We can do that by imagining that we record the position at all times, and that we (say)
count time in seconds from some starting time that we agree upon. Then the moving pen will
have position given by x = x(t) and y = y(t) at time t (seconds). We have a rule that gives x
and y in terms of t. So we have two function x(t) and y(t), where t runs over the time interval
where we draw the curve.

Another way to imagine it, is to imagine a tiny particle (in fact a point particle) that moves in
the plane according to the rule that at time t it is at position (x, y) with

{
x = x(t)
y = y(t)

(and t in some range). The curve is the trajectory traced out by the moving particle.

2.24 Examples. (i) Consider the example

{
x = cos t
y = sin t

(0 ≤ t ≤ 2π).

We can see that every point (x, y) described in this way, we have

x2 + y2 = cos2 t + sin2 t = 1

and this means that all the points lie on the unit circle (points of distance 1 away from the
origin).
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In fact this is one approach to explaining what cos t and sin t mean. Notice that here (and
always always in calculus) we are taking the angle t in radians).

(ii) We can describe the circle of radius r > 0 and center at (x0, y0) using the distance formula
and the requirement that points (x, y) on the circle are at distance r from the centre. We get√

(x− x0)2 + (y − y0)2 = r,

or, squaring both sides, the more usual form

(x− x0)
2 + (y − y0)

2 = r2.

We can parametrise this as{
x = x0 + r cos t
y = y0 + r sin t

(0 ≤ t ≤ 2π).

If we don’t allow t to run all the way from 0 to 2π we will only get part of the circle. If,
on the other hand we let t run longer (say 0 ≤ t ≤ 4π) the same points will be traced out
again. In this way, the trajectory or curve traced out is not the full story. In a parametric
curve we also give the information about how the curve was traced out, in which direction,
and whether some parts are gone over more than once.

When we multiply out the equation of a circle we get an equation

x2 + y2 − 2x0x− 2y0y = r2 − x2
0 − y2

0

of the form
x2 + y2 + Ax + By = C

where x2 and y2 have the same coefficient and there is no xy term. These are quadratic
equations in x and y of a very special form.
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(iii) Quadratic equations of the type
x2

a2
+

y2

b2
= 1

describe ellipses centred at the origin.

It is called an ellipse in ‘standard position’ where the longest and shortest diameters are
along the axes. The ellipse fits inside a box centered at the origin extending from x = −a
to x = a horizontally and from y = −b to y = b. (This box is included in the diagram
above as well as the actual curve, the ellipse.){

x = a cos t
y = b sin t

(0 ≤ t ≤ 2π).

describes the curve in parametric terms and this can be used in a Mathematica command.
In the case a = 5 and b = 2, we would type

ParametricPlot[ { 5 Cos[t], 2 Sin[t] }, {t, 0, 2 Pi}]

to plot the ellipse
x2

25
+

y2

4
= 1.

(iv) There is another rather different type of curve that arises from a quadratic equation in x
and y. It is called a hyperbola and in standard position (centered on the origin) it has an
equation

x2

a2
− y2

b2
= 1

One way to draw this curve is to draw the two diagonals of a rectangle centered at the
origin extending from x = −a to x = a horizontally and from y = −b to y = b. Extend
the diagonals infinitely far and the hyperbola has two sections, which follow the diagonals
very closely in the far distance.
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To parametrise this curve, we cannot use trigonometric functions but we can do it with
something called hyperbolic functions.

2.25 Hyperbolic functions. We explain now what the hyperbolic cosine cosh x is and what the
hyperbolic sine function sinh x. Our explanation is in terms of the exponential function ex which
is still to come in course 1S1.

The definitions are

cosh x =
ex + e−x

2
and

sinh x =
ex − e−x

2
.

These look completely different from the trigonometric functions cos θ and sin θ (which we
have seen relate to a circle), but they have very similar properties. The big difference is that the
trig functions are periodic with period 2π, that is

cos(θ + 2π) = cos θ, sin(θ + 2π) = sin θ

do not correspond to any properties of hyperbolic functions but just about every other formula
for trig functions has a counterpart for hyperbolic functions. The difference is that the minus
signs are not in the same places.

For example cosh2 x − sinh2 x = 1 (rather than cos2 θ + sin2 θ = 1). We can check out this
formula this way

cosh2 x− sinh2 x = (cosh x)2 − (sinh x)2

=

(
ex + e−x

2

)2

−
(

ex − e−x

2

)2

=
(ex)2 + (e−x)2 + 2exe−x

4
− (ex)2 + (e−x)2 − 2exe−x

4

=
4exe−x

4
= exe−x = ex−x = e0 = 1

Changing x to t we get cosh2 t− sinh2 t = 1 and this means that the parametric curve described
by {

x = cosh t
y = sinh t

(−∞ < t < ∞)
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consists of points lying on the hyperbola

x2

1
− y2

1
= 1

(or more simply x2− y2 = 1). In fact the parametric curve has x = cosh t > 0 always and so the
points are all on the right hand section of the hyperbola.

In 2.12 we had the example

ParametricPlot[ { 2 Cosh[t], Sinh[t] }, {t, -2, 2},
PlotRange -> {{-5, 5}, {-5, 5}}]

which means plotting {
x = 2 cosh t
y = sinh t

(−2 ≤ t ≤ 2)

(and the PlotRange instruction is to show the region where x and y each range −5 to 5).
In general, for a standard hyperbola

x2

a2
− y2

b2
= 1

we can parametrise the right hand section as{
x = a cosh t
y = b sinh t

(−∞ < t < ∞).

2.26 Superposition of plots. Sometimes it is of interest to show two graphs together on the one
plot. The Plot[ ] command in Mathematica has a facility for doing two plots together. For
example

Plot[ { Cosh[x], Exp[x]/2 }, {x, -2, 2} ]

is a way to plot the two graphs y = cosh x and y = ex/2 on the same diagram over the range
−2 ≤ x ≤ 2. (If you try it out, you should see that they are very close to each other around
x = 2. This is because the difference cosh x − ex/2 = e−x/2 and e−2/2 = 0.0676676 is quite
small. In fact limx→∞ e−x/2 = 0 and so the difference between the two graphs would be very
hard to notice at all if we go to larger x. For x < 0 though, these graphs are quite different.)

One thing that might be of interest is to look at a graph y = f(x) and its tangent line at a
specific point x = a. You know from course 1S1 that the slope of the tangent line to y = f(x) at
the point on the graph where x = a is the derivative (or rate of change) f ′(a). The tangent line
is the line with slope f ′(a) that goes through (a, f(a)) (which is the point on the graph at x = a,
the point where the line should be tangent.

You can work out the equation of the tangent line by taking a line y = mx + c with slope
m = f ′(a) and then fixing c so that (x, y) = (a, f(a)) satisfies the equation. In fact there is a
tidy way to write the equation of the tangent line as

y = f(a) + f ′(a)(x− a)
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and we will use this again quite often. You should see that x = a, y = f(a) satisfies this equation
and it is the equation of a line. (If you insist on writing it in the form y = mx + c, you can do
that and you get y = f ′(a)x + (f(a) − f ′(a)a), but that is not such a neat formula as the one
displayed above.)

The sequence of 3 mathematica commands

a = 1.2;
f[x_] = Cosh[x];

Plot[ { f[x], f[a] + f’[a](x-a) }, {x, -2, 2} ]

will then show the graph y = cos x together with its tagent line at the point where x = 1.2.
Probably it is rather unnecessary to use any ‘programming’ here as the function has a very

simple formula, and indeed Cosh[ ] is already known to Mathematica so that introducing a
new shorter name f[ ] for the same thing is hardly worth it. But you can see that we can use
the mathematical formula y = f(a) + f ′(a)(x− a) for the tangent line with almost no change.

You could work out cosh 1.2 = 1.81066 (so that (1.2, 1.81066) has to be a point on the tangent
line) and figure out that the slope is 1.50946 = d

dx
cosh x |x=1.2= sinh x |x=1.2= sinh 1.2. Then

the equation of the tangent line is y = 1.81066+1.50946(x−1.2) or y = 1.50946x−0.000698059
and we could plot the two things together by

Plot[ { Cosh[x], 1.50946 x -0.000698059 }, {x, -2, 2} ]

but the first way is easier to follow even if it uses some greater understanding of how Mathematica
works.

Richard M. Timoney (November 17, 2006)


