1S2 (Timoney) Tutorial sheet 15

[March 4 - 8, 2008]

Name: Solutions

In this sheet, we consider 3 orthonormal vectors $\mathbf{u}=u_1\mathbf{i}+u_2\mathbf{j}+u_3\mathbf{k}$, $\mathbf{v}=v_1\mathbf{i}+v_2\mathbf{j}+v_3\mathbf{k}$ and $\mathbf{w}=w_1\mathbf{i}+w_2\mathbf{j}+w_3\mathbf{k}$ in \mathbb{R}^3 . Let

$$P = \begin{bmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{bmatrix}, \quad Q = \begin{bmatrix} u_1 & u_2 & u_3 \\ w_1 & w_2 & w_3 \\ v_1 & v_2 & v_3 \end{bmatrix}$$

1. Show that the rotation matrix

$$R = P^{t} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix} P$$

is an orthogonal matrix.

Solution: The transpose of R is

$$R^{t} = P^{t} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}^{t} (P^{t})^{t} = P^{t} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \end{bmatrix} P$$

(using the rule that the transpose of a product is the product of the transposes taken in reverse order). So

$$RR^{t} = P^{t} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix} PP^{t} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \end{bmatrix} P$$

$$= P^{t} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \end{bmatrix} P$$

$$= P^{t} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} P$$

$$= P^{t}I_{3}P = P^{t}P = I_{3}$$

since we know P is an orthogonal matrix.

This shows $RR^t = I_3$ and shows that $R^{-1} = R^t$.

2. For the same R, show that det(R) = 1.

Solution: Since P is orthogonal we know $det(P) = \pm 1$. We also know that the determinant of a product is the product of the determinants. So

$$\det(R) = \det(P^t) \det \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix} \det(P)$$

$$= \det(P) \det \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \det(P)$$

$$\text{using } \det(P^t) = \det(P) \text{ and cofactor expansion}$$

$$= \det(P)^2(\cos^2 \theta + \sin^2 \theta) = (\pm 1)^2(1) = 1$$

3. For the same R, show that

$$R^{-1} = P^t \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(-\theta) & -\sin(-\theta) \\ 0 & \sin(-\theta) & \cos(-\theta) \end{bmatrix} P$$

Solution: This makes sense geometrically as the matrix on the right is the rotation through minus the angle for R.

Algebraicly we can work it out by observing $\cos(-\theta) = \cos \theta$, $\sin(-\theta) = -\sin \theta$ and so the matrix we have on the right is the same as

$$P^{t} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \end{bmatrix} P$$

which coincides with R^t (see first question). And $R^t = R^{-1}$.

4. Show that $det(Q) = -det(P) = \pm 1$ and that det(P) = 1 implies $\mathbf{v} \times \mathbf{w} = \mathbf{u}$. [Hint for the second part: look at the scalar triple product $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$ first geometrically, and then as a determinant.]

Solution: Since Q is the result of swopping two rows of P, det(Q) = -det(P).

Since P is orthogonal, $det(P) = \pm 1$.

Since \mathbf{u} , \mathbf{v} and \mathbf{w} are orthonormal, we know that $\mathbf{v} \times \mathbf{w}$ is a vector in either the same or the opposite direction to \mathbf{u} . (Recall $\mathbf{v} \times \mathbf{w}$ is perpendicular to the plane of \mathbf{v} and \mathbf{w} , but so also is \mathbf{u} .) In fact as the length of $\mathbf{v} \times \mathbf{w}$ is

$$\|\mathbf{v} \times \mathbf{w}\| = \|\mathbf{v}\| \|\mathbf{w}\| \sin(\pi/2) = 1 = \|\mathbf{u}\|$$

we must have $\mathbf{v} \times \mathbf{w} = \pm \mathbf{u}$. So

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \mathbf{u} \cdot (\pm \mathbf{u}) = \pm \mathbf{u} \cdot \mathbf{u} = \pm 1$$

But we know

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \det \begin{bmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{bmatrix} = \det P$$

So det(P)=1 in the case ${\bf v}\times {\bf w}={\bf u}$, while det(P)=-1 in the case ${\bf v}\times {\bf w}=-{\bf u}$. Richard M. Timoney