1S2 (Timoney) sample for part 2 of 1S1/1S2 christmas test

The instructions will say to do 3 questions from this part. They will also state:

Log tables are available from the invigilators, if required. Non-programmable calculators are permitted for this examination,—please indicate the make and model of your calculator on each answer book used.

1. Use Gauss-Jordan elimination to describe all solutions of the following system of linear equations:

 $5x_1 - x_2 - x_3 - 8x_4 = 5$ $15x_1 + 2x_2 + 3x_3 + 5x_4 = 10$ $10x_1 - 2x_2 + 4x_3 + 2x_4 = 8$

- 2. (a) For $\mathbf{v} = -3\mathbf{i} + 7\mathbf{j} + 2\mathbf{k}$ and $\mathbf{w} = 6\mathbf{i} 3\mathbf{j} + 5\mathbf{k}$, calculate $||5\mathbf{v} \mathbf{w}||$ and the projection $\operatorname{proj}_{\mathbf{w}}(\mathbf{v})$ of \mathbf{v} along the direction of \mathbf{w} .
 - (b) Find both the parametric and cartesian equations for the line in space which passes through the point (1, 2, 3) and is perpendicular to the plane

$$5x - 6y + z = 4.$$

- 3. (a) Let $\mathbf{x} = (2, 1, -3, 5, 2)$ and $\mathbf{y} = (3, 0, 3, -4, -2)$ (in \mathbb{R}^5). Compute the cosine of the angle between \mathbf{x} and \mathbf{y} .
 - (b) For

a —	$\begin{array}{c} 2\\ 4 \end{array}$	$-1 \\ 0$	$\frac{3}{-2}$, b =	$\left[\begin{array}{c}2\\4\\5\end{array}\right]$	$-2 \\ -5$	$\frac{1}{2}$	$\begin{bmatrix} 1 & 4 \\ 2 & 3 \\ 1 & 4 \end{bmatrix}$, c =	$\begin{bmatrix} \frac{1}{2} \\ 2 \end{bmatrix}$	$\begin{bmatrix} 3\\ -1 \end{bmatrix}$
<i>u</i> –	$3 \\ -4$	$\frac{1}{3}$	$5 \\ 2$			-3	$\frac{2}{1}$			4	$ \begin{array}{c} -2 \\ 0 \end{array} $

compute *ab*, *ba* and *bc*.

4. (a) What output would be produced by the following Mathematica instruction, and what does it mean?

FactorInteger[36]

- (b) Write a Mathematica instruction to factor $3x^2 + 2x 1$.
- (c) Write a Mathematica instruction to graph $y = \sin(x^2 + 1)$ for x in the range $-3 \le x \le 3$.
- (d) What does the following Mathematica instruction mean?

Solve $[x^2 + 4 y x - 5 y^2 == 0, x]$

Work out mathematically, in as much detail as you can, what the result will be (and give reasons).

	A	В	С	D
1	23			
2	19			
3	13			
4	10			
5	-5			
5				
7				
8				
9				
9 10				
11				

(e) The following shows a portion of a spreadsheet.

If you type into cell **B3** the keystrokes $=2 \times A4 + 1$ and return, what will then show in cell **B3**? If you then copy from cell **B3** and paste into cell **B4**, what will show in cell **B4** afterwards?

For those who still have a tutorial this week, you can ask about these questions during your tutorial. Richard M. Timoney