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1. (a) With the aid of a table like the following, show how the integer 37
would be converted to a bit pattern (zeros and ones) in a computer
with 32 bit integers.

37 . . .
Bit position: 1 2 . . . 27 28 29 30 31 32

Solution: We know 37 = 32 + 5 = 25 + 22 + 1 = (100101)2.

37 0 0 0. . . 0 1 0 0 1 0 1
Bit position: 1 2 . . . 27 28 29 30 31 32

(b) In a different context a computer will store 37 as a (single preci-
sion) floating point number with a (binary) mantissa and expo-
nent. Find the appropriate mantissa and exponent. Then explain
how this would convert to a bit pattern by use of a table like the
one above.

Solution: 32 = (100101)2 = (1.00101)2 × 25 and so the mantissa
is (1.00101)2 and the exponent is 5 = (101)2.

0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 0 0 . . . 0 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 . . . 31 32
± exponent mantissa less sign

(c) Convert the octal number (27214)8 to hexadecimal by first con-
verting it to binary using the ”3 binary for one octal” rule, and
then using a similar rule to convert to hexadecimal.

Solution:

(27214)8 = (010 111 010 001 100)2 = (10111010001100)2
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is the number in binary.

(10111010001100)2 = (0010 1110 1000 1100)2 = (2e8c)16

(d) Convert 40/7 to binary (and indicate the pattern of the expan-
sion).

Solution: Solution: First
40

7
= 5 +

5

7
and 5 = (101)2. We concen-

trate on the fractional part
5

7
.

Imagine the binary expansion as

5

7
= (0.b1b2b3 . . .)2

Double
10

7
= (b1.b2b3b4 . . .)2

Integer parts

b1 = 1

Fractional parts
3

7
= (0.b2b3b4 . . .)2

Double
6

7
= (b2.b3b4b5 . . .)2

Integer parts

b2 = 0

Fractional parts
6

7
= (0.b3b4b5 . . .)2

Double
12

7
= (b3.b4b5b6 . . .)2

Integer parts

b3 = 1

Fractional parts
5

7
= (0.b4b5b6 . . .)2

= (0.b1b2b3 . . .)2
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Thus the pattern repeats, b4 = b1, b5 = b2, etc and so 5
7

= (0.101)2.
The answer is

40

7
= 5 +

5

7
= (101.101)2

2. (a) For

D =


−1 0 0 0
0 4 0 0
0 0 3 0
0 0 0 −3


Find D−1 and D5.

Solution:

D−1 =


−1 0 0 0
0 1/4 0 0
0 0 1/3 0
0 0 0 −1/3



D5 =


(−1)5 0 0 0

0 45 0 0
0 0 35 0
0 0 0 (−3)5

 =


−1 0 0 0
0 1024 0 0
0 0 243 0
0 0 0 −243


(b) For

U =


1 −2 3 0
0 1 4 −2
0 0 1 5
0 0 0 1


find U−1.

Solution: We should use Gauss-Jordan elimination on [U |I4] (to
get [I4|U−1]). 

1 −2 3 0 : 1 0 0 0
0 1 4 −2 : 0 1 0 0
0 0 1 5 : 0 0 1 0
0 0 0 1 : 0 0 0 1


Add (−5)× row 4 to row 3 and also add 2× row 4 to row 2

1 −2 3 0 : 1 0 0 0
0 1 4 0 : 0 1 0 2
0 0 1 0 : 0 0 1 −5
0 0 0 1 : 0 0 0 1


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Add −4 times row 3 to row 2 and −3 times row 3 to row 1
1 −2 0 0 : 1 0 −3 15
0 1 0 0 : 0 1 −4 22
0 0 1 0 : 0 0 1 −5
0 0 0 1 : 0 0 0 1


Add 2 times row 2 to row 1

1 0 0 0 : 1 2 −11 59
0 1 0 0 : 0 1 −4 22
0 0 1 0 : 0 0 1 −5
0 0 0 1 : 0 0 0 1


Thus

U−1 =


1 2 −11 59
0 1 −4 22
0 0 1 −5
0 0 0 1


(c) With the same U as in the previous part, find L = U t and L−1.

Solution:

L = U t =


1 0 0 0
−2 1 0 0
3 4 1 0
0 −2 5 1



L−1 = (U t)−1 = (U−1)t =


1 0 0 0
2 1 0 0
−11 −4 1 0
59 22 −5 1


(d) With the same D, L and U as in the earlier parts of the question,

find (LDU)−1.
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(LDU)−1 = U−1D−1L−1

=


1 2 −11 59
0 1 −4 22
0 0 1 −5
0 0 0 1



−1 0 0 0
0 1/4 0 0
0 0 1/3 0
0 0 0 −1/3

L−1

=


−1 1/2 −11/3 −59/3
0 1/4 −4/3 −22/3
0 0 1/3 5/3
0 0 0 −1/3




1 0 0 0
2 1 0 0
−11 −4 1 0
59 22 −5 1



=


−1120 −835/2 284/3 −59/3
−835/2 −623/4 106/3 −22/3
284/3 106/3 −8 5/3
−59/3 −22/3 5/3 −1/3


3. (a) For

A =

 2 −1 0
0 −4 −2

−4 0 −2


find the determinant det(A).

Solution:

det(A) = 2 det

[
−4 −2
0 −2

]
− (−1) det

[
0 −2
−4 −2

]
+ 0

= 2(8− 0) + (0− 8) = 8

(b) Find the volume of the parallelopiped in space where three of
the edges are of the same length as and parallel to the vectors
u = 2i− j, v = −4j− 2k, and w = −4i− 2k.

Solution: This volume is given by the absolute value of the deter-
minant of the matrix with the vectors u, v and w as its rows. But
that matrix is the same A and so the volume is | det(A)| = |8| = 8.

(c) Use the determinant method to find the equation of the circle in
R2 that passes through the 3 points (4, 5), (7, 11) and (5, 1).
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Solution: The equation is

det


x2 + y2 x y 1
42 + 52 4 5 1
72 + 112 7 11 1
52 + 12 5 1 1

 = 0

det


x2 + y2 x y 1

41 4 5 1
170 7 11 1
26 5 1 1

 = (x2 + y2) det

 4 5 1
7 11 1
5 1 1

− x det

 41 5 1
170 11 1
26 1 1



+y det

 41 4 1
170 7 1
26 5 1

− det

 41 4 5
170 7 11
26 5 1


det

 4 5 1
7 11 1
5 1 1

 = det

 4 5 1
3 6 0
1 −4 0


= 4(0)− 5(0) + 1(−12− 6) = −18

det

 41 5 1
170 11 1
26 1 1

 = det

 41 5 1
129 6 0
−15 −4 0


= 41(0)− 5(0) + 1(−516 + 90) = −426

det

 41 4 1
170 7 1
26 5 1

 = det

 41 4 1
129 3 0
−15 1 0


= 41(0)− 4(0) + 1(129 + 45) = 174

det

 41 4 5
170 7 11
26 5 1

 = 41(7− 55)− 4(170− 286) + 5(850− 182) = 1836

So the equation is

−18(x2 + y2) + 426x + 174y − 1836 = 0.
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4. (a) Give the definition of an orthogonal matrix.

Solution: An n× n matrix A is called orthogonal if its transpose
is the same as its inverse.

(b) If A and B are orthogonal n × n matrices, show that AB is or-
thogonal.

Solution: Since At = A−1 we have AAt = In and similarly BBt =
In.

Now

(AB)(AB)t = ABBtAt = A(BBt)At = AInA
t = AAt = In

This shows that (AB)−1 = (AB)t and so AB is orthogonal.

(c) Show that 1 0 0
0 cos θ − sin θ
0 sin θ cos θ


is orthogonal no matter what (real number) value θ has.

Solution:1 0 0
0 cos θ − sin θ
0 sin θ cos θ

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

t

=

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

1 0 0
0 cos θ sin θ
0 − sin θ cos θ


=

1 0 0
0 cos2 θ + sin2 θ cos θ sin θ − sin θ cos θ
0 sin θ cos θ − cos θ sin θ sin2 θ + cos2 θ


=

1 0 0
0 1 0
0 0 1

 = I3

Therefore

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 is an orthogonal matrix.
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(d) If P is an orthogonal 3× 3 matrix, show that

R = P t

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

P

is orthogonal and has determinant det(R) = 1.

Solution: We could argue that it is a product of orthogonal ma-
trices, or do the following.

The transpose of R is

Rt = P t

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

t

(P t)t = P t

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

P

(using the rule that the transpose of a product is the product of
the transposes taken in reverse order). So

RRt = P t

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

PP t

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

P

= P t

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

P

= P t

1 0 0
0 1 0
0 0 1

P

= P tI3P = P tP = I3

since we know P is an orthogonal matrix.

This shows RRt = I3 and shows that R−1 = Rt.

Since P is orthogonal we know det(P ) = ±1. We also know that
the determinant of a product is the product of the determinants.
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So

det(R) = det(P t) det

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 det(P )

= det(P ) det

[
cos θ − sin θ
sin θ cos θ

]
det(P )

using det(P t) = det(P ) and cofactor expansion

= det(P )2(cos2 θ + sin2 θ) = (±1)2(1) = 1

5. (a) Show that the matrix

R =

−1 0 0
0 cos(π/4) sin(π/4)
0 sin(π/4) − cos(π/4)


is a rotation matrix.

Solution: Rotation matrices are exactly orthogonal matrices of
determinant 1. We can see

RRt =

−1 0 0
0 cos(π/4) sin(π/4)
0 sin(π/4) − cos(π/4)

−1 0 0
0 cos(π/4) sin(π/4)
0 sin(π/4) − cos(π/4)


=

(−1)2 0 0
0 cos2 π

4 + sin2 π
4 cos π

4 sin π
4 − sin π

4 cos π
4

0 sin π
4 cos π

4 − cos π
4 sin π

4 sin2 π
4 + cos2 π

4


=

1 0 0
0 1 0
0 0 1

 = I3

So R is orthogonal.

det R = (−1) det

[
cos(π/4) sin(π/4)
sin(π/4) − cos(π/4)

]
= (−1)(− cos2(π/4)− sin2(π/4)) = (−1)(−1) = 1

So R is a rotation.
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(b) For the same R, find the cosine of the angle θ for the rotation.

Solution: We know that the angle θ of rotation must satisfy

trace(R) = 1 + 2 cos θ

But
trace(R) = −1 + cos(π/4)− cos(π/4) = −1

and so we get 1 + 2 cos θ = −1, 2 cos θ = −2, cos θ = −1.

(c) Suppose

P =

u1 u2 u3

v1 v2 v3

w1 w2 w3


is an orthogonal matrix and let

Q =

u1 u2 u3

w1 w2 w3

v1 v2 v3


.

Show that the rows of P are orthonormal vectors (in R3) and use
that to compute PQt.

Solution:

PP t =

u1 u2 u3

v1 v2 v3

w1 w2 w3

u1 v1 w1

u2 v2 w2

u3 v3 w3


This product works out asu · u u · v u ·w

v · u v · v v ·w
w · u w · v w ·w


where u = u1i + u2j + u3k, v = v1i + v2j + v3k, and w = w1i +
w2j + w3k.

But we know also that

PP t = I3 =

1 0 0
0 1 0
0 0 1


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(since P is orthogonal, P t = P−1). Comparing we see

u · u = v · v = w ·w = 1

and all dot products between pairs of u, v and w are zero. That
says the vectors u, v and w are orthogonal. Since u · u = ‖u‖2

we have
‖u‖2 = ‖v‖2 = ‖w‖2 = 1

and so the vectors u, v and w are also unit vectors. So they are
othonormal.

PQt =

u
v
w

 [
u w v

]
=

u · u u ·w u · v
v · u v ·w v · v
w · u w ·w w · v

 =

1 0 0
0 0 1
0 1 0



6. For this question, take

A =

[
6 1
1 6

]
(a) Find the eigenvalues of A.

Solution: The eigenvalues are the solutions of the characteristic
equation det(A− λI2) = 0. So we work out

det(A−λI2) = det

([
6 1
1 6

]
− λ

[
1 0
0 1

])
= det

[
6− λ 1

1 6− λ

]
= (6−λ)2−1

Solving (6 − λ)2 − 1 we get (λ − 6)2 = 1 or λ − 6 = ±1. The
solutions are then λ = 7 and λ = 5.
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(b) Find an eigenvector for each eigenvalue (of A).

Solution: For each of the eigenvalues λ we have to solve for an
eigenvector by solving (A−λI2)v = 0 or row reducing [A−λI2 : 0].

For λ = 7 we row reduce[
6− λ 1 : 0

1 6− λ : 0

]
=

[
−1 1 : 0

1 −1 : 0

]
Multiply first row by −1.[

1 −1 : 0
1 −1 : 0

]
Subtract first row from second:[

1 −1 : 0
0 0 : 0

]
So we are left with one equation v1 − v2 = 0 and v2 free. If we
take v2 = 1 we get a nonzero eigenvector with v1 = 1 also, which
is v = i + j.

For λ = 5 we row reduce[
6− λ 1 : 0

1 6− λ : 0

]
=

[
1 1 : 0
1 1 : 0

]
Subtract first row from second:[

1 1 : 0
0 0 : 0

]
So we are left with one equation v1 + v2 = 0 and v2 free. If we
take v2 = 1 we get a nonzero eigenvector with v1 = −1, which is
v = −i + j.

(c) Find an orthogonal matrix P and a diagonal matrix D so that
A = P tDP .

Solution: We need normalised eigenvectors to make the rows of P
and eigenvalues to make the diagonal entries of D. The eigenvec-
tors we found both have length

√
2. So we divide them by

√
2 to

make them unit vectors.

P =

[
1√
2

1√
2

− 1√
2

1√
2

]
, D =

[
7 0
0 5

]
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7. The matrix A =

[
2 −1

3/2 −1/2

]
is diagonalisable and A = SDS−1 where

S =

[
1 2
1 3

]
, D =

[
1 0
0 1

2

]
, S−1 =

[
3 −2
−1 1

]
(a) Calculate eAx.

Solution: We know Ax = (SDS−1)x = S(Dx)S−1 (since x is a
scalar) and Dx is the diagonal. In fact

Dx ==

[
x 0
0 x

2

]
.

Then

eAx = SeDxS−1

= S

[
ex 0
0 ex/2

]
S−1

=

[
1 2
1 3

] [
ex 0
0 ex/2

]
S−1

=

[
ex 2ex/2

ex 3ex/2

] [
3 −2
−1 1

]
=

[
3ex − 2ex/2 −2ex + 2ex/2

3ex − 3ex/2 −2ex + 3ex/2

]
(b) Find the general solution of the system of linear differential equa-

tions 
dy1

dx
= 2y1 − y2

dy2

dx
= (3/2)y1 − (1/2)y2

Solution: We know the general solution has the form

y =

[
y1

y2

]
= α1e

λ1xv1 + α2e
λ2xv2

where α1, α2 are arbitrary constants and v1 and v2 are the eigen-
vectors for the eigenvalues λ1 and λ2 of A.
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We know from A = SDS−1 that the eigenvalues are λ1 = 1 and
λ2 = 1/2. We also know that the eigenvectors are the columns of
S. So the general solution is

y =

[
y1

y2

]
= α1e

x

[
1
1

]
+ α2e

x/2

[
2
3

]
=

[
α1e

x + 2α2e
x/2

α1e
x + 3α2e

x/2

]
We could write this y1(x) = α1e

x+2α2e
x/2, y2(x) = α1e

x+3α2e
x/2.

(c) Find the solution of the same system which satisfies the initial
conditions y1(0) = 9 and y2(0) = 6.

Solution: We need to pick the constants α1 and α2 so that[
9
6

]
=

[
y1(0)
y2(0)

]
=

[
α1e

0 + 2α2e
0

α1e
0 + 3α2e

0

]
=

[
α1 + 2α2

α1 + 3α2

]
So we solve {

α1 + 2α2 = 9
α1 + 3α2 = 6

and we can do that by row reducing[
1 2 : 9
1 3 : 6

]
→

[
1 2 : 9
0 1 : −3

]
→

[
1 1 : 15
0 1 : −3

]
So α1 = 15 and α2 = −3.

That gives y1(x) = 15ex − 6ex/2, y2(x) = 15ex − 9ex/2.

8. (a) A loaded die has the following probabilities of showing the num-
bers 1–6 after a throw:

3

17
,

2

17
,

4

17
,

2

17
,

1

17
,

5

17

(in that order). Find the probability that a number ≥ 5 will show
after the die is thrown.

A random variable X associated with the outcome has the values

X(1) = X(3) = 4, X(2) = X(6) = −2, X(4) = X(5) = 3.

Find the mean of the random variable.
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Solution: The probability of a number ≥ 5 is

P (5) + P (6) =
1

17
+

5

17
=

6

17

The mean of the random variable X is

P (1)X(1) + P (2)X(2) + P (3)X(3) + P (4)X(4) + P (5)X(5) + P (6)X(6)

=
3

17
4 +

2

17
(−2) +

4

17
4 +

2

17
3 +

1

17
3 +

5

17
(−2)

=
23

17

(b) If the number of alpha particles detected per second by a particular
detector obeys a Poisson distribution with mean µ = 0.8, what is
the probability that at most 2 particles are detected in a given
second?

Solution: We know that the probability that the number detected
is eactly n is

P (n) =
µn

n!
e−µ

and what we want is

P ({0, 1, 2}) = P (0) + P (1) + P (2) =
1

0!
e−µ +

µ

1!
e−µ +

µ2

2!
e−µ

Now e−µ = e−0.8 = 0.449329. So the result is

P ({0, 1, 2}) =

(
1 + µ +

µ1

2

)
e−µ = (1+0.8+0.32)(0.449329) = 0.952577

(c) A factory produces bottles of a juice that are sold as 0.33 litre
bottles. A good model is that the quantity of juice in a bottle
obeys a normal distribution with mean 0.34 (litres) and standard
deviation 0.03. What proportion of the bottles have at least 0.32
litres in them?

Solution: We know the probality that the result of a normal dis-
tribution with mean µ and standard deviation σ is less than x can
be related to the standard normal by

P (result < x) = Fµ,σ(x) = F0,1

(
x− µ

σ

)
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In our case

P ([0.32,∞) = 1− P (result < 0.32)

= 1− F0.34,0.03(0.32)

= 1− F0,1

(
0.32− 0.34

0.03

)
= 1− F0,1(−0.666)

= F0,1(0.666)

= 0.747294

So 74.73% have at least 0.32 litres in them.
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