
Chapter 8. Linear transformations
This material is a reduced treatment of what is in Anton & Rorres sections 4.2, 4.3, chapter 6
(mostly for the case of 3 dimensions) and chapter 7.

8.1 Introduction
Our aim first is to give a new way of looking at matrices. It is a development from ideas in
section 5.7 where we expressed a system of linear equations as a single matrix equation

Ax = b

Recall that a system of m linear equations in n unknowns
a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
...

...
am1x1 + am2x2 + · · · + amnxn = bm

can be written as a single matrix equation Ax = b where A is an m × n matrix, x is an n × 1
(column) matrix of unknowns and b is an m× 1 column.

In single variable calculus we realise that it is convenient to use the language of functions
to explain what happens when we are solving equations. The kind of examples we have there
include

2x + 3 = 5 (linear)
x2 + 2x + 7 = 2 (quadratic)

x3 + 4x2 − 2x + 1 = 4 (cubic)
cos x = x (more complicated — can be

written cos x− x = 0)

We can think of all of these as f(x) = 0 or f(x) = b for a suitable function f(x).
Inspired by this experience we might be inclined to think of a system of linear equations

Ax = b

in terms of functions.
The functions we need for this have to be functions of a vector

x =


x1

x2
...

xn


or alternatively can be viewed as functions of n variables (x1, x2, . . . , xn). In fact the language
of functions is already designed to cope with these more complex situations.
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While we become used to having functions f(x) where the independent variable x is a num-
ber, and where f(x) is usually given by a formula, this is not the definition of a function. We
may be used to saying “let f(x) = x3 + 4x2 − 2x + 1 be a function” (so given by the formula)
but this is not the only kind of function that is allowed.

In general a function f : S → T is something that has a domain set S and a target set T (more
often called a codomain set T ) and the definition says that a function f is a rule that assigns one
and only one element f(s) ∈ T to each s ∈ S. The rule does not have to be a formula, but it does
have to be an unambiguous rule that works for every s in the domain set S. We usually refer to
f(s) as the ‘value’ of the function at s.

The most familiar examples are functions f : R → R where the domain is S = R (the whole
real line) and the values are also real numbers. So we have functions like f(x) = x cos x or
f(x) = x2 + 2x + 3 where the rule is given by a formula. Sometimes we also encounter cases
where the domain S is not all of R, but only a part of R. For instance the square root function
f(x) =

√
x gets in trouble if we try to take square roots of negative numbers. We would usually

take the domain S = [0,∞) = {x ∈ R : x ≥ 0} and f : [0,∞) → R, f(x) =
√

x. (This might
be a good place to remark that by the square root we mean the positive square root. So

√
4 means

2, not −2. If we did not do this the square root would not qualify as an ordinary function with
values in R. f(x) to have just one value when we have a function.)

For function f : R2 → R, there are examples we have more or less seen already. We could
have for example

f(x) = ‖x‖ = distance from x to 0

or we could write the same example

f(x) =
√

x2
1 + x2

2

when we take x = x1i + x2j (or equivalently think of points x = (x1, x2) ∈ R2).
Another perfectly good example would be

f(x1, x2) = x3
1 + x4

2 − x1

(which has no obvious geometrical interpretation, but makes sense as a rule that associates a
value f(x1, x2) to a point (x1, x2) ∈ R2).

An example that is a bit closer to the kinds of functions that will really interest us is

f(x1, x2) = 2x1 − 3x2

We can rewrite this using vectors as

f(x1, x2) = (2i− 3j) · (x1i + x2j).

We’ll be thinking of this example, or things very like it, in matrix language. The matrix product

[
2 −3

] [
x1

x2

]
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is a 1× 1 matrix
[2x1 − 3x2]

and so has just one entry, the number 2x1 − 3x2. If we are prepared to ignore the (arguably
rather technical) difference between the number 2x1−3x2 as a pure number and the 1×1 matrix
[2x1 − 3x2], then we can write the same example using matrix multiplication

f

([
x1

x2

])
=

[
2 −3

] [
x1

x2

]
Now that we’ve shown some examples in R2, we could show some examples in R3 without

too much extra imagination. We could even look at functions f : Rn → R given by rules (or
formulae) like

f(x) = ‖x‖

which now looks like
f(x1, x2, . . . , xn) =

√
x2

1 + x2
2 + · · ·+ x2

n.

Another example, generalising the one we just gave with 2i−3j, would be to fix a = (a1, a2, . . . , an) ∈
Rn and define f : Rn → R by the rule

f(x) = a · x

We could think of this example in matrix terms also as

f




x1

x2
...

xn


 =

[
a1 a2 · · · an

]


x1

x2
...

xn


if we are still prepared to ignore the distinction between a scalar and a 1× 1 matrix.

When A is an m× n matrix the formula

f(x) = Ax

applied to an n× 1 (column)

x =


x1

x2
...

xn


will produce an m× 1 result. So the result can be interpreted as a point (or vector) in Rm (if we
identify n-tuples x = (x1, x2, . . . , xn) with n× 1 column matrices, and similarly identify m× 1
column matrices with points in Rm). Our formula f(x) = Ax will then make sense to define a
function

f : Rn → Rm
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Often people prefer to call these transformation rather than functions. Technically they are
the same as functions (rules that work on some domain and produce values somewhere) but the
idea of using the word ‘transformation’ instead of plain ‘function’ is partly due to the fact that
the values are vectors rather than scalar values. There is also a geometrical way of thinking about
what these transformations do, or look like, that we will try to explain in some examples soon.
This viewpoint partly explains the ‘transformation’ word.

For now we will summarise what we have with a definition.

8.1.1 Definition. A linear transformation f : Rn → Rm is a function given by a rule

f(x) = f




x1

x2
...

xn


 = A


x1

x2
...

xn

 = Ax

for some give m× n matrix A.

8.2 Examples of linear transformations
In the first examples we take n = m = 2, so that we have 2 × 2 matrices A and linear transfor-
mations f : R2 → R2 of the plane.

(i) A =

[
3 0
0 3

]
,

Ax = A

[
x1

x2

]
=

[
3 0
0 3

] [
x1

x2

]
=

[
3x1

3x2

]
So we have f : R2 → R2 and f(x) = 3x = the vector 3 times as long as x in the same
direction. Or, if we think in terms of points in the plane f(x) is the point 3 times further
from the origin than x, in the same direction.

Thinking of what happens to the points of R2 (picture the plane) after you apply the trans-
formation f to them, you see everything expands by a factor 3 away from the central point
at the origin. This is sometimes called ‘dilation’ by a factor 3 (like looking through a
magnifying glass).

(ii) A =

[
5 0
0 1

]
,

Ax = A

[
x1

x2

]
=

[
5 0
0 1

] [
x1

x2

]
=

[
5x1

x2

]
The picture here is that the plane is expanded or stretched horizontally (in the x1- or x-
direction) by a factor 5, while the vertical scale is not affected. The vertical axis does not
move.
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(iii) A =

[
1 0
0 −1

]
,

Ax = A

[
x1

x2

]
=

[
1 0
0 −1

] [
x1

x2

]
=

[
x1

−x2

]
The picture for this involves a mirror. The relation between x and f(x) is that the point
f(x) arises by reflecting the original point x in the horizontal axis.

(iv) A =

[
cos α − sin α
sin α cos α

]
,

Ax = A

[
x1

x2

]
=

[
cos α − sin α
sin α cos α

] [
x1

x2

]
=

[
(cos α)x1 − (sin α)x2

(sin α)x1 + (cos α)x2

]

In the picture the effect of this transformation is shown as a rotation by an angle α (radians)
anticlockwise. To see why this is the case, it is easiest if we use polar coordinates. This
means describing the position of a point x = (x1, x2) ∈ R2 via two other numbers (t, θ)
where r = ‖x‖ =

√
x2

1 + x2
2 = distance (x,0) and θ is the angle (in radians) from the
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positive x1-axis (horizontal of x-axis) around anticlockwise to the radius from the origin to
x. In formulae, the relation is

(x1, x2) = (r cos θ, r sin θ)

If we apply the map, we get

f(x) = Ax =

[
cos α − sin α
sin α cos α

] [
r cos θ
r sin θ

]
=

[
(cos α)(r cos θ)− (sin α)(r sin θ)
(sin α)(r cos θ) + (cos α)(r sin θ)

]
=

[
r(cos α cos θ − sin α sin θ)
r(sin α cos θ + cos α sin θ)

]
=

[
r cos(α + θ)
r sin(α + θ)

]
At the last step above we used two trigonometric identities you may recall:

cos(α + θ) = cos α cos θ − sin α sin θ

sin(α + θ) = sin α cos θ + cos α sin θ

The result of the above calculation is that the polar coordinates for the image point f(x)
have the same r as the original point x, so same distance from the origin, but the polar
coordinates angle for f(x) is θ + α, or an increase by α on the angle θ for x. This justifies
the picture.

8.3 Orthogonal matrices
Before we look at more examples, we point out that the last two examples, the reflection and the
rotation, both have the property that

A−1 = At

In fact for the reflection we have

A =

[
1 0
0 −1

]
= A−1 = At

and for the rotation, you can check out that

A =

[
cos α − sin α
sin α cos α

]
has A−1 =

1

det(A)

[
cos α sin α
− sin α cos α

]
=

[
cos α sin α
− sin α cos α

]
= At

So in both cases AAt = I2 = AtA.
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8.3.1 Definition. An n× n matrix A is called an orthogonal matrix if AAt = In = AtA (which
means that A is invertible and A−1 = At.

If we write n-tuples as columns

v =


v1

v2
...

vn

 , w =


w1

w2
...

wn

 ,

then the dot product
v ·w = v1w1 + v2w2 + · · ·+ vnwn

can be expressed in matrix terms if we are prepared to overlook the distinction between a scalar
and a 1× 1 matrix.

(vt)w =
[
v1 v2 · · · vn

]


w1

w2
...

wn

 = [v1w1 + v2w2 + · · ·+ vnwn] = v ·w

Using this way of looking at things we can show that orthogonal matrices have some nice prop-
erties. (So these properties apply in particular to our 2× 2 reflections and rotations.)

8.3.2 Proposition. Let A be an n× n orthogonal matrix and f : Rn → Rn the associated linear
transformation f(x) = Ax. Then, for v,w ∈ Rn we have

(i) (Av) · (Aw) = v ·w

(ii) f(v) · f(w) = v · w (so that the orthogonal matrices preserve inner products, or the
transformation associated with them preserves inner products)

(iii) ‖Av‖ = ‖v‖

(iv) ‖f(v)‖ = ‖v‖ (so preserve distance from the origin)

(v) ‖Av − Aw‖ = ‖v −w‖

(vi) ‖f(v)− f(w)‖ = ‖v −w‖ (so preserve distances between points)

(vii) if θ denotes the angle between v and w, then the angle between f(v) = Av and f(w) =
Aw is also θ (so preserves angles).

Proof. Since we have mostly done the work already we can quickly show that all these properties
are indeed correct.
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(i) (Av) · (Aw) = ((Av)t)Aw = vtAtAw = vtInw = (vt)w = v ·w
(We used here the rule that the transpose of a product is the product of the transposes in the
reverse order.)

(ii) f(v) · f(w) = v ·w is just the same thing again in a different notation.

(iii) ‖Av‖2 = (Av) · (Av) = v · v = ‖v‖2 (by the first part with v = w). So ‖Av‖ = ‖v‖.

(iv) ‖f(v)‖ = ‖v‖ is just the same statement again.

(v) ‖Av−Aw‖ = ‖A(v−w‖ = ‖v−w‖ (using properties of matrix multiplication and also
the last statement).

(vi) ‖f(v)− f(w)‖ = ‖v −w‖ is just the same thing again in different notation.

(vii) The angle θ between v and w comes about (by definition when n > 3 or because we proved
it for n = 2 and n = 3) from

v ·w = ‖v‖‖w‖ cos θ,

But, using what we have just shown we can deduce

(Av) · (Aw) = v ·w = ‖v‖‖w‖ cos θ = ‖Av‖‖Aw‖ cos θ,

which says that the angle between f(v) = Av and f(w) = Aw is also θ.

8.3.3 Proposition. If A is an orthogonal matrix, the det(A) = ±1.

Proof. (See tutorial sheet 14, q 4).
If A is orthogonal, AAt = In. So det(AAt) = det(In) = 1. So

det(A) det(At) = 1.

But det(At) = det(A). Thus we get

(det(A))2 = 1

and that tells us det(A) has to be either 1 or −1.

8.3.4 Proposition. The 2 × 2 orthogonal matrices of determinant 1 are exactly the rotation
matrices.

A =

[
cos α − sin α
sin α cos α

]
(α ∈ R, or 0 ≤ α < 2π)

The 2× 2 orthogonal matrices of determinant −1 are exactly the products[
cos α − sin α
sin α cos α

] [
1 0
0 1

]
of a rotation and a reflection matrix.
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Proof. We can see quite easily that the rotation matrices do have determinant 1, and they are all
orthogonal as we already saw.

det

[
cos α − sin α
sin α cos α

]
= (cos α)2 − (− sin α)(sin α) = cos2 α + sin2 α = 1

Now if we start with some orthogonal 2× 2 matrix

B =

[
b11 b12

b21 b22

]
,

we want to show it is a rotation matrix, or a rotation matrix times a reflection.
Notice that

Bi = B

[
1
0

]
=

[
b11 b12

b21 b22

] [
1
0

]
=

[
b11

b21

]
is the first column of B. So it must be a unit vector (or the point (b11, b21) must be on the unit
circle) since we know ‖Bi‖ = ‖i‖ = 1 (because of Proposition 8.3.2 (iii)). So if we write this
point in polar coordinates we can say [

b11

b21

]
=

[
cos β
sin β

]
for some β.

Next notice that

Bj = B

[
0
1

]
=

[
b11 b12

b21 b22

] [
0
1

]
=

[
b12

b22

]
is the second column of B. It must be also be a unit vector and it has to be perpendicular to

Bi =

[
cos β
sin β

]
(since i ⊥ j and orthogonal matrices preserve angles — Proposition 8.3.2 (vii)).

But there are just two unit vectors in the plane perpendicular to
[
cos β
sin β

]
. You can see that

from a picture, and you can also check that those two vectors are[
− sin β
cos β

]
and −

[
− sin β
cos β

]
=

[
sin β
− cos β

]
So these are the two choices for the second column of B and we have

B =

[
cos β − sin β
sin β cos β

]
or B =

[
cos β sin β
sin β − cos β

]
In the first case we have a rotation matrix (and det(B) = 1) while the second possibility can be
written

B =

[
cos β sin β
sin β − cos β

]
=

[
cos β − sin β
sin β cos β

] [
1 0
0 −1

]
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In this second case we have

det(B) = det

([
cos β − sin β
sin β cos β

])
det

([
1 0
0 −1

])
= (1)(−1) = −1

So the sign of the determinant distinguished between the two cases.

8.3.5 Remark. We can think of the transformation in the second case (when det(B) = −1
above) as the result of first applying a reflection in the horizontal axis and then doing a rotation.
So the transformation in this case is a reflection followed by a rotation.

We won’t justify it, but in fact this combination of a reflection and a rotation is just a reflection
in some line through the origin. (The one inclined at angle β/2 in fact.)

8.4 Rotations in space
Can we say anything about rotations in space? We described rotations in the plane R2 about the
origin. What can we say in R3?

We need an axis to rotate around in space. If we choose a convenient axis, then it is quite
easy to see what to do. For example, if we rotate around the z-axis, the z-coordinates (or alti-
tudes above the horizontal x-y plane) will stay constant and the rotation will affect the x and y
coordinates in the same way as a rotation of the plane about the origin. We can then use what we
had above about rotations in R2 and show that the matrixcos α − sin α 0

sin α cos α 0
0 0 1


corresponds to rotation about the z-axis by the angle α.

To see this more clearly look atcos α − sin α 0
sin α cos α 0

0 0 1

x
y
z

 =

(cos α)x− (sin α)y
(sin α)x + (cos α)y

z


We see that (x, y) is rotated by α anticlockwise (from the x-axis towards the y-axis) to give

((cos α)x− (sin α)y, (sin α)x + (cos α)y)

and the height z stays fixed.
Here we used the fact that the axis was one of the coordinate axes. We can manage in a

similar way if the axis is one of the other axes. For example rotation about the x-axis by an angle
α (from y towards the z-axis) is given by the matrix1 0 0

0 cos α − sin α
0 sin α cos α


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But what about another axis? We would need a way to describe the direction of the axis and
giving a nonzero vector u parallel to the axis seems like a handy way to describe that. Since the
length of the vector does not seem to be useful, we can assume u is a unit vector. (If it is not,
divide it by its length ‖u‖, which means replace the original u by u/‖u‖.)

One ‘solution’ is to choose 3 axes so that u is a unit vector in the direction of one of the axes.
Then we have just seen how to write down a matrix to implement the rotation.

While this is an attractive solution, it is not really a complete solution. While in principle it is
open to us to choose our coordinate axes to suit our problem (sometimes people call it choosing
a frame of reference), mostly we are given the frame of reference earlier and we want to compute
in terms of the given frame (or the given coordinates). What we really need is a way to go back
and forth from the convenient coordinates to the original ones.

Suppose then we are given 3 perpendicular axes with the same origin as the original 3 axes.
We will not discuss axes or frames with a different origin than the original. So, suppose we are
thinking about describing the effect of a rotation about an axis through the origin in the direction
of a unit vector u. We assume we have 2 other axes perpendicular to each other and to u. We
can worry later about how to calculate them, but it is not hard to visualise u along with 2 other
directions v and w so that u, v and w are all perpendicular unit vectors.

To make it more clear, imagine u is already known. Graphically, you can think of the plane
through the origin perpendicular to u and visualise two unit vectors v and w in that plane and
perpendicular to each other. We’ll explain later how we might calculate v and w using com-
ponents, starting from u given in components. (For the moment we will not worry about this
aspect.)
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Now that we have 3 perpendicular unit vectors u, v and w, we will write them in components

u = u1i + u2j + u3k,

v = v1i + v2j + v3k,

w = w1i + w2j + w3k.

We claim that the matrix P made by using these vectors as the rows of P is an orthogonal matrix.
That is

P =

u1 u2 u3

v1 v2 v3

w1 w2 w3


is orthogonal. The reason is that when we compute

PP t =

u1 u2 u3

v1 v2 v3

w1 w2 w3

u1 v1 w1

u2 v2 w2

u3 v3 w3


we multiply rows of P into columns of P t and that means we end up taking dot products between
rows of P . We get

PP t =

u · u u · v u ·w
v · u v · v v ·w
w · u w · v w ·w

 =

‖u‖2 0 0
0 ‖v‖2 0
0 0 ‖w‖2

 =

1 0 0
0 1 0
0 0 1

 = I3

because the 3 vectors are perpendicular to one another and are unit vectors (length 1).
Since P is a square matrix and PP t = I3, then P tP = I3 is automatically true also and so

P t is P−1.
We will show soon how to make use of the observation that P is orthogonal. One thing we

can see is that

Pu =

u1 u2 u3

v1 v2 v3

w1 w2 w3

u1

u2

u3

 =

u · u
v · u
w · u

 =

1
0
0

 = i

and similarly
Pv = j, Pw = k.

If we multiply the 3 equations

Pu = i, Pv = j and Pw = k (8.4.1)

by P−1 = P t on the left we get

u = P tj, v = P tj and w = P tk. (8.4.2)

In words (8.4.1) says that multiplication by P sends the new basis vectors u, v and w back
to the standard ones i, j and k, while (8.4.2) says that multiplication by P t does the opposite.

What we need though is to relate coordinates of any x ∈ R3 with respect to the new u, v and
w axes to coordinates of x is the standard axes.
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Notice first that it is possible to express any vector x is R3 as a combination

x = ξ1u + ξ2v + ξ3w

with components ξ1, ξ2, ξ3 (scalars). Look back at section 3.6 and 3.6 when we showed that every
vector x must be able to be expressed as

x = x1i + x2j + x3k

for some x1, x2, x3 ∈ R. We argued then in a geometrical way, based on the given axes. If we
argue now in the same way, using the new u, v and w axes, we find that there must be scalars
ξ1, ξ2, ξ3.

That is a geometrical argument, which says something can be done. But in practice we need
a way to calculate ξ1, ξ2, ξ3. There is a nice trick for this using dot products. Remember, we
know there are numbers ξ1, ξ2, ξ3 but we want a way to calculate them. Starting from

x = ξ1u + ξ2v + ξ3w

we can compute

x · u = (ξ1u + ξ2v + ξ3w) · u
= ξ1u · u + ξ2v · u + ξ3w · u
= ξ1 + 0 + 0

= ξ1

and similarly we can check
x · v = ξ2 and x ·w = ξ3.

In matrix terms, we haveξ1

ξ2

ξ3

 =

x · u
x · v
x ·w

 =

u · x
v · x
w · x

 =

u1 u2 u3

v1 v2 v3

w1 w2 w3

x1

x2

x3

 = P

x1

x2

x3


We can thus add to our earlier observations about P and P t the following.

8.4.1 Proposition. If x = x1i+x2j+x3k = ξ1u+ ξ2v+ ξ3w, where u, v, w are three mutually
perpendicular unit vectors, and if

P =

u1 u2 u3

v1 v2 v3

w1 w2 w3


then ξ1

ξ2

ξ3

 = P

x1

x2

x3

 (8.4.3)
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and x1

x2

x3

 = P t

ξ1

ξ2

ξ3

 (8.4.4)

The second statement (8.4.4) follows by multiplying both sides of (8.4.3) by P t = P−1.

8.4.2 Remark. Note that (8.4.2) said multiplication by P t sends the original basis vectors i, j
and k to the ‘new’ basis vectors u, v and w. But (8.4.3) says that P maps coordinates in the
standard basis to coordinates in the new basis.

We could refer to P as the change of basis matrix, but there is also a case for giving that name
to P t (which has u, v and w as its columns).

8.4.3 Rotations in 3 dimensions. We can now write down a rotation around an axis in the
direction u by an angle θ (a rotation by θ from v towards w in fact). In the coordinates of the

new axes, we can use what we did earlier. Rotation sends the point with coordinates

ξ1

ξ2

ξ3

 to the

point with coordinates 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

ξ1

ξ2

ξ3


Let us write η1

η2

η3

 =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

ξ1

ξ2

ξ3

 (8.4.5)

for the coordinates of the rotated point in the u, v and w axes. Let us also name this rotated point
y.

We are saying then that when we apply the rotation to

x = ξ1u + ξ2v + ξ3w

the result is
y = η1u + η2v + η3w.

What we want is to be able to do all this in terms of coordinates with respect to the original
basis i, j and k. We can figure this out using what we did before about the matrix P .

If x = x1i + x2j + x3k in standard coordinates, we know from (8.4.3)ξ1

ξ2

ξ3

 = P

x1

x2

x3


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On the other hand if y = y1i + y2j + y3k is the rotated point expressed in standard coordinates,
then (8.4.4) tells us y1

y2

y3

 = P t

η1

η2

η3


If we put these last two equations together with (8.4.5) we gety1

y2

y3

 = P t

η1

η2

η3

 = P t

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

ξ1

ξ2

ξ3

 = P t

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

P

x1

x2

x3


The summary then is this

8.4.4 Proposition. The matrix for a rotation around the axis through the origin in the direction
u, has the form

R = P t

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

P (8.4.6)

where u is assumed to be a unit vector, v and w are two other unit vectors perpendicular to each
other and to u, and the angle θ is measured from v towards w. Here

P =

u1 u2 u3

v1 v2 v3

w1 w2 w3


where u = u1i + u2j + u3k, v = v1i + v2j + v3k and w = w1i + w2j + w3k.

8.4.5 Remarks. If we apply the rotation R from (8.4.6) to u we get

Ru = P t

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

Pu

= P t

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 i

(using Pu = i from (8.4.1)

= P t

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

1
0
0


= P t

1
0
0


= P ti

= u
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(using P ti = u from (8.4.2) at the last step).
So u is fixed by R. But that is right because u is the axis.
Let’s look now at Rv. Following steps that are similar till near the end, we get

Rv = P t

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

Pv

= P t

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 j

= P t

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

0
1
0


= P t

 0
cos θ
− sin θ


= P t((cos θ)j− (sin θ)k)

= (cos θ)P tj− (sin θ)P tk

= (cos θ)v − (sin θ)w

Again, this is what we should expect to get when we think in terms of the axes u, v and w.

We’ll give some terminology now. It is standard terminology and it deals with concepts that
arose above.

8.4.6 Definition. Vectors u, v and w in R3 are called orthogonal if they are all perpendicular
to one another. That is if u ⊥ v, u ⊥ w and v ⊥ w. (Using dot products we can express this
u · v = 0, u ·w = 0 and v ·w = 0.)

Vectors u, v and w in R3 are called orthonormal if they are orthogonal and they are also all
unit vectors. (So u · u = v · v = w ·w = 1 as well as orthogonality.)

This terminology (orthogonal and also orthonormal) is used for different numbers of vectors,
not just for 3 vectors. However there is not room for more than 3 orthonormal vectors in R3 and
room for only 2 in R2. So if we are in space, we can only have 1, 2 or 3 orthonormal vectors. In
Rn we can have more.

The definition of orthogonality is that each vector listed should be perpendicular to every
other one. For orthonormal, each one should be a unit vector in addition.

8.4.7 Remark. We saw above that if u, v and w are 3 orthonormal vectors in R3 then we can
write every x ∈ R3 as a combination

x = (x · u)u + (x · v)v + (x ·w)w

In two dimensions we have a similar fact. If u and v are orthonormal vectors in R2 then we
can write every x ∈ R2 as a combination

x = (x · u)u + (x · v)v
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In this 2-dimensional setting, if we write u = u1i + u2j and v = v1i + v2j then the matrix P
made by using the coordinates of u and v as its rows

P =

[
u1 u2

v1 v2

]
has properties like we had in the 3× 3 case earlier. These are

(i) P is an orthogonal matrix

(ii) Pu = i and Pv = j.

(iii) P ti = u and P tj = v.

(iv) For x =

[
x1

x2

]
∈ R2,

Px =

[
u1 u2

v1 v2

] [
x1

x2

]
=

[
x · u
x · v

]
gives the components of x in the u-v basis (or frame).

Our next goal is to be able to complete the programme we started of writing down the matrix
R from (8.4.6) starting with the axis u and the angle θ. What we did in (8.4.6) is a solution to
that but it requires us to know the other two vectors v and w (so that the 3 together make up an
orthonormal triple of vectors). As explained before, it is not hard to visualise v and w but we
need a way to calculate them if we want to write down R.

The Gram-Schmidt method, which we now explain, is a useful method for other things. It
starts with a number of vectors and ‘straightens them out’ so as to make them orthonormal to one
another. In our case we will have 3 vectors.
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In order to use it we need to have 3 vectors to start with, let’s call them u, r and s. The vector
u will be the one we know, the direction of the axis of rotation. We need r and s so that none of
the 3 vectors lies in the same plane as the other two. This might sound hard, but it will work to
take r = i and s = j unless u is a combination of i and j (with no k component).

If the axis u = (1/
√

5)(i + 2j) for example, we can take r = i and s = k. So finding r and s
is not a big deal.

8.4.8 Gram-Schmidt procedure. Starting with 3 vectors u, r and s, the procedure makes 3
orthonormal vectors u, v and w. It is a procedure with 3 steps (or really 2).

Step 1: If u is not a unit vector already, replace it by (1/‖u‖)u (the unit vector with the same
direction).

Step 2: Take

v =
r− (r · u)u

‖r− (r · u)u‖

Step 3: Take

w =
s− (s · u)u− (s · v)v

‖s− (s · u)u− (s · v)v‖

The process is straightforward enough, though the calculations can take a bit of time to do.
Here is an explanation of what is going on.

Step 1 is clear enough, perhaps. In our situation we will probably have a unit vector u anyhow
and so step 1 will not be needed. But the rest of the steps need u to be a unit vector.

The numerator r− (r · u)u in step 2 works out as the difference

r− proju(r)

and so is perpendicular to u. (Look back at the pictures in section 3.11 to see why it is perpen-
dicular.) Without thinking in terms of projections we can calculate

(r− (r · u)u) · u = r · u− (r · u)u · u = r · u− (r · u)1 = 0

to see that they are indeed perpendicular. The numerator r− (r ·u)u can’t be zero because of the
assumption that r is not in the same plane as u and s. So, when we divide the numerator vector
by its length we get a unit vector v which is perpendicular to u.

An important little fact is that the plane of u and v is the same as the plane of u and s, so that
r is not in that plane.

At step 3, the numerator vector turns out to be perpendicular to both u and to v. That can be
checked using dot products. For example(

s− (s · u)u− (s · v)v
)
· u = s · u− (s · u)u · u− (s · v)v · u

= s · u− (s · u)1− 0

= 0
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Similarly the dot product with v works out as 0.
Dividing by the length gives a unit vector. We will not be dividing by zero since that would

mean that s would be the same as (s · u)u + (s · v)v and that would say s would be in the plane
of u and v (which it is not).

8.4.9 Right handed and left handed. So now u, v and w are orthonormal vectors and one of
them is u. So

P =

u1 u2 u3

v1 v2 v3

w1 w2 w3


is an orthogonal matrix.

But there is another (apparently equally good) triple of vectors u, w and v and another
orthonormal change of basis matrix

Q =

u1 u2 u3

w1 w2 w3

v1 v2 v3


where the order of v and w is reversed.

Which is better? Or is there any difference?
We know from tutorial sheet 14 (q 4) that orthogonal matrices have determinant ±1. [The

argument applied to P is that PP t = I3 implies det(PP t) = det(I3) = 1. But det(PP t) =
det(P ) det(P t) by the rule about determinants of a product and also we know det(P t) = det(P )
(see §6.4). So, combining these things we find 1 = det(P ) det(P t) = det(P )2 and so det(P ) =
±1.]

Now
det(Q) = − det(P )

because we get from one to the other by swapping two rows. (See Theorem 6.4.3.) It turns out
that the one with determinant +1 is the one that corresponds to a right handed choice of axes,
and so that one is perhaps better to use.

The link with right or left handed axes (see tutorial 15, q 4) is as follows. We worked out in
section 6.7 (see mention of the term ‘scalar triple product’) that

det(P ) = det

u1 u2 u3

v1 v2 v3

w1 w2 w3

 = u · (v ×w)

If we think geometrically for a while, we see that, since u, v and w are orthonormal, v ×w
is a vector in either the same or the opposite direction to u. (Recall v×w is perpendicular to the
plane of v and w, but so also is u.) In fact as the length of v ×w is

‖v ×w‖ = ‖v‖‖w‖ sin(π/2) = 1 = ‖u‖

we must have v × w = ±u. For u, v and w to be a right handed frame, we should have
v ×w = u and so

det(P ) = u · (v ×w) = u · (u) = u · u = 1.
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On the other hand if v × w = −u, then we can reverse the order to get w × v = u and so
det(Q) = 1 in this case.

8.4.10 Example. Find the matrix for the rotation about the axis u = (1/
√

3)(i + j + k) by an
angle θ = π/4, the rotation to be in the direction so that a right-handed screw placed along the
axis u will travel in the direction of the vector u (rather than the opposite direction).
Solution: The idea is to come up with a right-handed frame u, v and w, to take

P =

u1 u2 u3

v1 v2 v3

w1 w2 w3


and then (using (8.4.6)) compute

R = P t

1 0 0
0 cos(π/4) − sin(π/4)
0 sin(π/4) cos(π/4)

P

First we should use Gram-Schmidt to find an orthonormal frame including an axis along the
direction u. We can use r = i and s = j. Now the steps of Gram-Schmidt.

Step 1: u is a unit vector already and so this step is not needed.

Just to check
‖u‖ =

1√
3
‖i + j + k‖ 1√

3

√
12 + 12 + 12 = 1

Step 2: Calculate

r− (r · u)u = i−
(

1√
3

)
u

= i−
(

1

3

)
(i + j + k)

=
2

3
i− 1

3
j− 1

3
k

=
1

3
(2i− j− k)

‖r− (r · u)u‖ =
1

3
‖2i− j− k‖

=
1

3

√
22 + (−1)2 + (−1)2

=

√
6

3

v =
r− (r · u)u

‖r− (r · u)u‖

=
1√
6
(2i− j− k)
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Step 3: Next compute

s− (s · u)u− (s · v)v = j−
(

1√
3

)
u−

(
1√
6

)
v

= j−
(

1

3

)
(i + j + k)−

(
−1

6

)
(2i− j− k)

= j−
(

1

3

)
(i + j + k) +

(
1

6

)
(2i− j− k)

=

(
2

6
− 1

3

)
i +

(
1− 1

3
− 1

6

)
j−

(
1

3
+

1

6

)
k

=
1

2
j− 1

2
k

=
1

2
(j− k)

‖s− (s · u)u− (s · v)v‖ =
1

2
‖j− k‖

=

√
2

2

w =
s− (s · u)u− (s · v)v

‖s− (s · u)u− (s · v)v‖

=
1√
2
((j− k)

Let us check now if we have a right-handed frame from u, v and w. The matrix P is
1√
3

1√
3

1√
3

2√
6
− 1√

6
− 1√

6

0 1√
2

− 1√
2


and we can calculate its determinant. Using the rules for determinants it will make our lives
easier if we factor out 1/

√
3 from the first row, 2/

√
6 from the second and 1/

√
2 from the third.

det(P ) =

(
1√
3

) (
2√
6

) (
1√
2

)
det

1 1 1
2 −1 −1
0 1 −1


=

1√
36

det

1 1 1
0 −3 −3
0 1 −1

 =

(
1

6

)
(−3) det

1 1 1
0 1 1
0 1 −1


= −1

2
det

1 1 1
0 1 1
0 0 −2

 = −1

2
(−2) = 1

Here is the same calculation done in Mathematica.
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Now to calculate R

R = P t

1 0 0
0 cos(π/4) − sin(π/4)
0 sin(π/4) cos(π/4)

P

= P t

1 0 0

0 1/
√

2 −1/
√

2

0 1/
√

2 1/
√

2




1√
3

1√
3

1√
3

2√
6
− 1√

6
− 1√

6

0 1√
2

− 1√
2


= P t


1√
3

1√
3

1√
3

2
2
√

3
− 1

2
√

3
− 1

2
− 1

2
√

3
+ 1

2
2

2
√

3
− 1

2
√

3
+ 1

2
1

2
√

3
− 1

2


=


1√
3

2√
6

0
1√
3
− 1√

6
1√
2

1√
3
− 1√

6
− 1√

2




1√
3

1√
3

1√
3

1√
3
− 1

2
√

3
− 1

2
− 1

2
√

3
+ 1

2
1√
3
− 1

2
√

3
+ 1

2
1

2
√

3
− 1

2


As this is getting long-winded, maybe we should continue the Mathematica calculation:



So finally we get the answer

R =

 1
3
(1 +

√
2) 1

6
(2−

√
2−

√
6) 1

6
(2−

√
2 +

√
6)

1
6
(2−

√
2 +

√
6) 1

3
(1 +

√
2) 1

6
(2−

√
2−

√
6)

1
6
(2−

√
2−

√
6) 1

6
(2−

√
2 +

√
6) 1

3
(1 +

√
2)


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8.4.11 Theorem. The 3 × 3 rotation matrices are exactly all the 3 × 3 orthogonal matrices of
determinant 1.

(This statement is also true about 2× 2 matrices — see Proposition 8.3.4.)

Steps required for a proof. Perhaps we don’t need to prove this in every detail, but some parts
are easy enough on the basis of what we know and others are illuminating for what we will do
later. The main steps are

1. Rotation matrices are orthogonal.

2. Rotation matrices have determinant 1.

3. Orthogonal matrices with determinant 1 are all rotations.

We’ve done the first two steps in tutorials (tutorial 15, questions 1 & 2). The last step is the
hardest. We won’t do it but we will show in an example some of the ingredients that go into a
proof.

8.4.12 Example. Show that the matrix

A =

0 1 0
0 0 1
1 0 0


is a rotation matrix and find the axis of rotation (up to an ambiguity of ±) and the angle of
rotation (up to an ambiguity between θ and 2π − θ).
Solution: Assuming we know the theorem is correct, what we have to do to establish that A is
a rotation matrix is to show AAt = I3 (so A is orthogonal) and det(A) = 1. Neither of these is
difficult to check, but then finding the axis and the angle will be the things that involve some new
techniques.

To check the two things we notice

AAt =

0 1 0
0 0 1
1 0 0

0 0 1
1 0 0
0 1 0

 =

1 0 0
0 1 0
0 0 1


and (computing by cofactor expansion along the first row)

det(A) = 0− 1 det

[
0 1
1 0

]
+ 0 = −1(−1) = 1

(In fact A is an example of a permutation matrix — a single nonzero entry in each row and each
column, and the nonzero entries are all = 1. We mentioned these permutation matrices briefly
before in §6.3. In fact all of them are orthogonal matrices, but some have determinant −1.)

Now, if we want to find out which rotation has matrix A (or if we were going to try and prove
the theorem) we would have to come up with a way to find out the axis for the rotation. Recall
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that the axis for a rotation matrix R is in a direction u which has Ru = u. That means that the
axis itself does not move. So if there is an axis for the rotation A, then we must have Au = u.
We can rewrite this as

Au = I3u

(A− I3)u = 00 1 0
0 0 1
1 0 0

−
1 0 0

0 1 0
0 0 1

u = 0

−1 1 0
0 −1 1
1 0 −1

u = 0

We need a solution u to this which is a unit vector, or if we just find any nonzero solution u we
can take (1/‖u‖)u to get a unit vector. We know how to solve equations like this. What we have
is a matrix form of an equation and we can solve it by row-reducing the augmented matrix −1 1 0 : 0

0 −1 1 : 0
1 0 −1 : 0


First Gauss-Jordan step: multiply row 1 by −1 (to get 1 in top left). 1 −1 0 : 0

0 −1 1 : 0
1 0 −1 : 0


Next Gauss-Jordan step: subtract first row from third (to get new third row and zeros below
leading 1 in top left).  1 −1 0 : 0

0 −1 1 : 0
0 1 −1 : 0


Next Gauss-Jordan step: multiply row 2 by −1 (to get leading 1 in row 2) 1 −1 0 : 0

0 1 −1 : 0
0 1 −1 : 0


Next Gauss-Jordan step: subtract second row from third (to get new third row and zeros below
leading 1 in row 2).  1 −1 0 : 0

0 1 −1 : 0
0 0 0 : 0


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Next (final) Gauss-Jordan step: add second row to first (to get zeros above the last leading 1, the
leading 1 in row 2).  1 0 −1 : 0

0 1 −1 : 0
0 0 0 : 0


Rewrite as equations: {

u1 − u3 = 0
u2 − u3 = 0

So we get 
u1 = u3

u2 = u3

u3 free

By taking a nonzero value for u3 we get a nonzero solution. For example we could take u3 = 1
which gives u1 = u2 = u3 = 1 and the vector i+ j+k parallel to the axis of rotation. If we want
a unit vector we should divide this by its length and get

u =
1√
3
(i + j + k)

Is there any other possible answer for u? Well, yes there is. If we take any positive value for
u3 we will end up with the same unit vector u but if we take a negative value for u3 we end up
with the unit vector in the opposite direction. So we are left with

u = ± 1√
3
(i + j + k)

Which should it be? The answer is that both are possible because a rotation by an angle θ
becomes an rotation by 2π − θ when viewed upside down.

The idea of the picture is to convince you that a rotation of θ radians anticlockwise looked at
from above has the same effect as a rotation by 2π − θ radians clockwise, and the clockwise
rotation of 2π − θ will look like an anticlockwise rotation if you look at it from below (or from
behind the page).
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So both the plus and minus signs are possible in the vector u but the choice will affect the
correct angle θ for the rotation.

There is a shortcut to working out the angle θ based on the trace of a matrix. We discussed the
trace in §5.17 (it is the sum of the diagonal entries of a square matrix) and most of its properties
are pretty easy. The only curious one was that trace(AB) = trace(BA) even though AB and
BA need not be equal at all.

Recall from (8.4.6) that a rotation has a matrix of the form

R = P t

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

P

where P is orthogonal matrix. Using the remark about traces

trace(R) = trace

P t

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

P


= trace

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

P

 P t


= trace

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

PP t


= trace

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 I3


= trace

1 0 0
0 cos θ − sin θ
0 sin θ cos θ


= 1 + cos θ + cos θ = 1 + 2 cos θ

Our matrix A has

trace(A) = trace

0 1 0
0 0 1
1 0 0

 = 0

and so the angle for our rotation has to satisfy

1 + 2 cos θ = 0

or cos θ = −1/2. This gives two possible angles

θ =
2π

3
or θ =

4π

3
= 2π − 2π

3
.
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As we explained before, either choice could be right depending on whether we choose one
sign or the other for the vector u.

Unfortunately, we are still left with an ambiguity

u =
1√
3
(i + j + k) and θ =

2π

3
or θ =

4π

3

We could work out the matrix for both of these rotations and one of them must turn out to be
A. But that is quite a bit more work.

8.5 Abstract approach to linear transformations
We defined linear transformations using matrices. Given an m × n matrix A we consider
f : Rn → Rm given by f(x) = Ax. Recall that we found it handy for this to write x ∈ Rn

as an n× 1 column matrix x =


x1

x2
...

xn

 (and the same for elements of Rm).

We have looked at some examples and we considered the examples of rotation matrices (2×2
and 3× 3) is some detail. An important aspect in the 3× 3 case was the desirability of changing
from the original i, j, k frame of reference to a different orthonormal frame (or basis) u, v, w.

It is useful in association with this kind of idea to have a way of describing linear transfor-
mations without reference to any particular frame of reference.

8.5.1 Theorem. Linear transformations f : Rn → Rm are exactly those functions (or transfor-
mations) that satisfy the two properties

(i) f(x + y) = f(x) + f(y) (for x,y ∈ Rn)

(ii) f(kx) = kf(x) (for x ∈ Rn, k a scalar)

Proof. There are two things to prove here:

1. Every linear transformation f(x) = Ax satisfies (i) and (ii).

2. If we have a map that satisfies (i) and (ii) then there is some m × n matrix that gives rise
to the map f .

Here is how we do them

1. This is quite easy. If f(x) = Ax then we can see

f(x + y) = A(x + y)

= Ax + Ay

(by properties of matrix multiplication)
= f(x) + f(y)
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and

f(kx) = A(kx)

= kAx

(by properties of matrix multiplication again)
= kf(x)

2. Suppose f : Rn → Rm satisfies (i) and (ii). Then we need to find a matrix A and show it
works out.

To explain how to do this we need to introduce vectors (or points) in Rn which are the
obvious extension of the standard basis vectors i, j ∈ R2 and i, j,k ∈ R3. To avoid running
out of letters we use the same letter e and a subscript.

We let

e1 =


1
0
0
...
0

 , e2 =


0
1
0
...
0

 , · · · en =


0
0
...
0
1

 ,

where they are all n× 1 matrices (or n-tuples) and the jth one ej has 1 in the jth position,
zeros elsewhere.

The idea of these (called the ‘standard basis vectors’ in Rn) is that we can write every

x =


x1

x2
...

xn

 as a combination

x = x1


1
0
0
...
0

 + x2


0
1
0
...
0

 + · · ·+ xn


0
0
...
0
1


= x1e1 + x2e2 + · · ·+ xnen

To find the columns of the matrix A we use

f(e1), f(e2), . . . f(en)

That is we write

f(e1) =


a11

a21
...

am1

 , f(e2) =


a12

a22
...

am2

 , · · · , f(en) =


a1n

a2n
...

amn

 ,
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and take

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
am1 am2 · · · amn


We claim now that this choice of A works out. That is we claim that it must be true that

f(x) = Ax for every x ∈ Rn.
To verify this claim we first do it when x is any of the standard basis vectors e1, e2, . . . , en.

That is quite easy because of the way matrix multiplication works

Ae1 =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
am1 am2 · · · amn




1
0
...
0



=


a11

a21
...

am1


= the first column of A

= f(e1)

Similarly
Ae2 = second column of A = f(e2)

and we get f(ej) = Aej for j = 1, 2, . . . , n this way.
Finally, for any arbitrary x ∈ Rn we can write

x = x1e1 + x2e2 + · · ·+ xnen

and use (i) and (ii) to get

f(x) = f(x1e1) + f(x2e2) + · · ·+ f(xnen)

= x1f(e1) + x2f(e2) + · · ·+ xnf(en)

= x1Ae1 + x2Ae2 + · · ·+ xnAen

= A(x1e1 + x2e2 + · · ·+ xnen)

= Ax

8.5.2 Remark. The idea then of (i) and (ii) in the Theorem above is to give an abstract interpre-
tation of what we mean by the word “linear” in “linear transformation”.

One consequence (i) and (ii) is that we always have f(0) = 0 for a linear transformation f .
That is really obvious from the matrix approach — if f(x) = Ax always, then f(0) = 0.
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We can also get it directly from (i) like this. From (i) we have

f(0) = f(0 + 0)

= f(0) + f(0)

Then add (−1)f(0) to both sides of this equation to get

0 = f(0)

8.6 Rigid motions

We have looked above at rotations (fixing the origin) in R2 and R3 and we’ve seen that they are
implemented by multiplication by orthogonal matrices of determinant equal to 1.

It is possible to show (we will not do it) that the linear transformations f : Rn → Rn that
arise from orthogonal matrices are exactly those that have the distance preserving property

distance(f(x), f(y)) = distance(x,y)

or
‖f(x)− f(y)‖ = ‖x− y‖

(for every x,y ∈ Rn).
There is a point of view (which we will not pursue) that the rotations are the result of ‘rigid

motions’ of the plane R2 or space R3. The idea is that a rigid motion is a continuous change
starting from the identity (which leaves every point x unchanged) to end up at some final position,
but we have to do it in such a way that at every intermediate time distances are preserved. Points
of the plane or of space should be moved along gradually so that distances are maintained. We
insist also that the origin never moves. Then it is the case that we must end up with some rotation
applied to all the points.

It is not so hard to see that rotations are in this category, as we can start with a rotation by
angle zero (which moves nothing) and gradually change the angle until we end up at the angle
we want to reach.

Reflections of the plane cannot be arrived at by a continuous change from the identity (while
also insisting that distances are always preserved). You could flip the plane gradually around the
axis to end up with a rotation of π (or 180 degrees) but that involves moving the plane out of
itself, and so is not considered a rigid motion of the plane. It would be a rigid motion in space.

We will not try to justify any of these statements.

8.7 Orthogonal diagonalisation

We move on now to consider linear transformations f : R3 → R3 that are given by diagonal
matrices in some choice of frame or orthonormal basis. (We could do this in R2 and it would be
slightly easier, or we could do it in Rn for any n but that seems too abstract.)
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If we start with a 3× 3 diagonal matrix

A =

λ1 0 0
0 λ2 0
0 0 λ3


we get a linear transformation f : R3 → R3, f(x) = Ax that has

f(i) =

λ1 0 0
0 λ2 0
0 0 λ3

1
0
0

 =

λ1

0
0

 = λ1i

and we can see similarly that

f(j) = λ2j and f(k) = λ3k.

We want to look at linear transformations f (or 3 × 3 matrices A) that behave like this, not
on the standard basis i, j,k but instead on some other orthonormal basis u,v,w.

8.7.1 Proposition. Suppose we have a 3×3 matrix A, and a corresponding linear transformation
f : R3 → R3 given by the rule f(x) = Ax.

Then there is an orthonormal basis u,v,w and scalars λ1, λ2, λ3 so that

f(u) = λ1u, f(v) = λ2v and f(w) = λ3w

if only if there is an orthogonal matrix P so that

A = P t

λ1 0 0
0 λ2 0
0 0 λ3

P

Idea of the proof. We’ll prove some of this, though none of it is really hard.
Suppose we have the orthonormal basis u,v,w and the scalars λ1, λ2, λ3. Where do we find

P ?
Well it is the same change of basis matrix we used before in connection with rotations.

P =

u1 u2 u3

v1 v2 v3

w1 w2 w3


(where the rows come from u,v,w). Recall that

Pu = i, Pv = j, Pw = k,

and
P ti = u, P tj = v, P tk = w.
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Look at the matrix

B = P t

λ1 0 0
0 λ2 0
0 0 λ3

P

(which we hope to show coincides with A).
If we calculate Bu we get

Bu = P t

λ1 0 0
0 λ2 0
0 0 λ3

Pu

= P t

λ1 0 0
0 λ2 0
0 0 λ3

 i

= P t(λ1i)

= λ1P
ti

= λ1u

= Au

Similarly
Bv = Av and Bv = Av

Since every x ∈ R3 can be written as a combination

x = (x · u)u + (x · v)v + (x ·w)w

of u,v,w we can show now quite easily that Bx = Ax always.
If we use this for x = i we find

first column of B = first column of A

and we can show the other columns must coincide by taking x = j and x = k. So B = A.

8.7.2 Observation. If

A = P t

λ1 0 0
0 λ2 0
0 0 λ3

P

then At = A. (We call a matrix with this property of being equal to its own transpose a symmetric
matrix.)

Proof. Recall that the transpose of a product is the product of the transposes taken in the reverse
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order. So if A is as above then

At = P t

λ1 0 0
0 λ2 0
0 0 λ3

t

(P t)t

= P t

λ1 0 0
0 λ2 0
0 0 λ3

P

= A

8.7.3 Theorem. The n× n symmetric matrices A are exactly those that can be written

A = P tDP

for an n× n orthogonal matrix P and an n× n diagonal matrix D.

8.7.4 Remark. The proof of this theorem is going to be beyond us. One bit is very easy and
we’ve already given it in the ‘Observation’. That is we showed (at least in the 3× 3 case) that if
A = P tDP , then At = A.

The other part is the hard part and what we’ll do is explain some of the ideas that you need
to know if you want to use the result. That is, we’ll explain how to find P and D starting with
a symmetric A. We won’t give any explanation of why it is always possible (in theory) to find
P and D. We’ll stick mainly to the 3 × 3 case, and the explanation here also skips over a
complication that can arise (when there are only 2 different eigenvalues, rather than the usual 3).

To some extent Proposition 8.7.1 already has the bones of what we need, but it helps to have
some more terminology to explain what to do.

8.7.5 Definition. A vector v ∈ Rn is called an eigenvector for a square n× n matrix A if

• v 6= 0, and

• Av is a multiple of v

So there is a scalar λ so that
Av = λv

The number λ is called the eigenvalue (some people may use the name ‘characteristic value’)
for the eigenvector v of A.

8.7.6 Theorem. The eigenvalues of an n× n matrix A are exactly the solutions of the character-
istic equation for A, which is the equation

det(A− λIn) = 0
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Proof. If λ is an eigenvalue for A, that means there is an eigenvector v for the eigenvalue λ. So,
Av = λv, and then we can say that

Av = λInv,

and that can be rearranged to say
(A− λIn)v = 0

Since v is an eigenvector, then v is not the obvious solution v = 0 of that equation. If
we apply Theorem 5.13.2 (b) (not to the matrix A, but to the matrix A − λIn) this is a way of
recognising that A − λIn is not invertible. (If A − λIn had an inverse matrix, then the equation
(A− λIn)v = 0 would have only the zero solution.)

But another way to say that A− λIn is not invertible is to say

det(A− λIn) = 0

(see Theorem 6.4.2).
This shows that if λ is an eigenvalue, then λ solves the characteristic equation.
To go the other way, that is to show that if λ solves the characteristic equation then λ must be

an eigenvalue, is not a very different line of argument. So we’ll skip that, as we’ve said enough to
show the connection between the concept of an eigenvalue and the solutions of the characteristic
equation.

8.7.7 Proposition (A slightly incomplete statement). If A is a symmetric matrix then we can
write A = P tDP (with P orthogonal and D diagonal) if we take

• D to be the diagonal matrix with the eigenvalues of A along the diagonal

• P to be a matrix where the rows are orthonormal eigenvectors of A for the eigenvalues (in
the same order as we take the eigenvalues along the diagonal of D).

We will not prove this. The idea is to take unit vector eigenvectors. So we find the egenvalues
from the characteristic equation, and then we get eigenvectors for each eigenvalue. Next we
divide the eigenvectors by their length to make them unit vectors as well as eigenvectors.

The eigenevectors are usually automatically perpendicular to one another and so orthonormal.
The more complicated case is where there is more than one eigenvector for the same eigenvalue.
To explain that a bit more, any nonzero multiple of an eigenvector is always another eiegenvector
for the same eigenvalue. (If Av = λv, then A(2v) = λ(2v). So 2v is again an eigenvector for
the eigenvalue λ, and we can change the factor 2 to any nonzero factor.) By ‘more than one
eigenvector’ I mean one where there are eiegenevectors that are not just multiples of each other,
and still belong to the same eigenvalue λ.

Those cases are a bit more tricky to work out. But maybe we will manage not to pick any of
those more complicated examples!

8.7.8 Example. For

A =

[
1 2
2 4

]
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find an orthogonal matrix P and a digaonal maytrix D so that A = P tDP .
Solution: We want the eigenvalues and so we should work out the characteristic equation

det(A− λI2) = 0

We have

A− λI2 =

[
1 2
2 4

]
− λ

[
1 0
0 1

]
=

[
1− λ 2

2 4− λ

]
So we have det(A− λI2) = (1− λ)(4− λ)− 4 = (λ− 1)(λ− 4)− 4 = λ2 − 5λ + 4− 4 and
the characteristic equation works out as

λ2 − 5λ = 0

This is a quadratic equation (as it will be for every 2× 2 matrix) and so we can solve it. We can
do it in this case by factoring the equation as

λ(λ− 5) = 0

So the two solutions (the two eigenvalues) are λ = 0 and λ = 5.

Aside: Be careful not to divide out λ without taking account of the fact that λ = 0
is a solution.

This is only a 2× 2 example, rather than 3× 3 as we used for illustration before. So what we
have now is the two eigenvalues λ1 = 0 and λ2 = 5. We should take our diagonal matrix D to be

D =

[
λ1 0
0 λ2

]
=

[
0 0
0 5

]
but to find P we need eigenvectors.

For λ = λ1 = 0 (the first eigenvalue) we want a nonzero vector v =

[
v1

v2

]
∈ R2 so that

Av = λ1v. In this case that is Av = 0v, so Av = 0. We can find that by row-reducing the
augmented matrix [

1 2 : 0
2 4 : 0

]
The first step is to subtract 2 times row 1 from row 2, to get the new row 2:[

1 2 : 0
0 0 : 0

]
This is already completely row reduced (reduced row echelon form) and it means that we really
only have one equation

v1 + 2v2 = 0
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(as the second row gives 0 = 0 — so tells us nothing). We can say that v1 = −2v2 and v2 is a
free variable. If we take v2 = 1 then we get v1 = −2 and the nonzero solution

v =

[
−2
1

]
What would have happened if we took a different value for the free variable v2? If we took
v2 = 20 we would just get 20 times the above vector. So just a multiple of the same eigenvector,
not really different.

What we do want to do is to normalise that eigenvector to get one of length 1. In vector
notation we have

v = (−2)i + j

and we want to take

v

‖v‖
=

−2i + j√
(−2)2 + 12

=
1√
5
(−2i + j) = − 2√

5
i +

1√
5
j

as our normalised eigenvector.
Now, for the other eigenvalue λ = λ2 = 5 we want a nonzero vecor v (not the same v as we

have a moment ago) so that Av = 5v. We write that as Av = 5I2v or (A− 5I2)v = 0. We can
see that

A− 5I2 =

[
1 2
2 4

]
− 5

[
1 0
0 1

]
=

[
−4 2
2 −1

]
and this time we want to row reduce [

−4 2 : 0
2 −1 : 0

]
We should divide row 1 by −4 (to get 1 in the top left corner) and we have[

1 −1/2 : 0
2 −1 : 0

]
and then replace row 2 by OldRow 2 −2× OldRow1 to get[

1 −1/2 : 0
0 0 : 0

]
Again we have just one equation v1 − (1/2)v2 = 0. Again we should take v2 free. This time
v1 = (1/2)v2 and if we pick v2 = 1 we get the eigenvector

1

2
i + j
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(Actually it might save us some bother to take v2 = 2 instead.) We should normalise this to

(1/2)i + j

‖(1/2)i + j‖
=

(1/2)i + j√
1/4 + 1

=
(1/2)i + j√

5/4

=
(1/2)i + j√

5/2

=
2√
5
((1/2)i + j)

=
1√
5
i +

2√
5
j

We now have the two eigenvectors to make into the rows of P . The result is

P =

[
− 2√

5
1√
5

1√
5

2√
5

]
Notice that the rows of P are perpendicular to one another. As we have normalised the rows

to be unit vectors, we have that P is an orthogonal matrix. We do then get A = P tDP or

A =

[
1 2
2 4

]
=

[
− 2√

5
1√
5

1√
5

2√
5

]t [
0 0
0 5

][
− 2√

5
1√
5

1√
5

2√
5

]
=

[
− 2√

5
1√
5

1√
5

2√
5

] [
0 0
0 5

][
− 2√

5
1√
5

1√
5

2√
5

]
If you are doubtful that the theory really holds out (or just want to check that we made no

slips in the calculations) we can verify[
− 2√

5
1√
5

1√
5

2√
5

] [
0 0
0 5

][
− 2√

5
1√
5

1√
5

2√
5

]
=

[
0

√
5

0 2
√

5

][
− 2√

5
1√
5

1√
5

2√
5

]
=

[
1 2
2 4

]
The theory says that this should always work for a symmetric A. One thing that could possi-

bly go wrong for the 2×2 case is that the characteristic equation (the quadratic equation to solve
for the eigenvalues) might have complex roots. Well, that never will happen if A is symmetric.

Let’s try a 3 × 3 example to see how it goes. You can probably see that the calculations are
fairly long even for the 2× 2 case, though we could shorten what is written above by leaving out
some of the chatty bits.

8.7.9 Example. Find the eigenvalues of the matrix

A =

2 1 1
1 2 1
1 1 3


Solution: We need to work out the characteristic equation det(A−λI3) = 0 and find its solutions.
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First

A− λI3 =

2 1 1
1 2 1
1 1 3

− λ

1 0 0
0 1 0
0 0 1

 =

2− λ 1 1
1 2− λ 1
1 1 3− λ


We can expand the determinant along the first row

det(A− λI3) = (2− λ) det

[
2− λ 1

1 3− λ

]
− 1 det

[
1 1
1 3− λ

]
+ 1 det

[
1 2− λ
1 1

]
= (2− λ)((2− λ)(3− λ)− 1)− (3− λ− 1)

+1− (2− λ)

= −(λ− 2)((λ− 2)(λ− 3)− 1)− (2− λ)− 1 + λ

= −(λ− 2)(λ2 − 5λ + 6− 1)− 3 + 2λ

= −(λ− 2)(λ2 − 5λ + 5)− 3 + 2λ

= −(λ3 − 5λ2 + 5λ− 2λ2 + 10λ− 10)− 3 + 2λ

= −(λ3 − 7λ2 + 15λ− 10)− 3 + 2λ

= −(λ3 − 7λ2 + 13λ− 7)

Now Theorem 8.7.3 says that there have to be 3 real solutions to this (3 eigenvalues for the
symmetric matrix A). However, it does not help us immediately with finding the solutions. In
fact every cubic equation has at least one real root, but the formula for the roots of a cubic is too
messy to be useful.

In practice the best hope for finding the roots is to use the remainder theorem. That says
that if λ = λ1 is a solution of the (polynomial) equation

λ3 − 7λ2 + 13λ− 7 = 0

then λ− λ1 must divide λ3 − 7λ2 + 13λ− 7. The only nice way to find a solution is to hope we
can spot one, and the only way to do that is to try the divisors of 7 (the constant term). Those
divisors are 1, −1, 7 and −7.

For 1 we get
(λ3 − 7λ2 + 13λ− 7) |λ=1= 1− 7 + 13− 7 = 0

and so the remainder theorem says λ− 1 divides λ3 − 7λ2 + 13λ− 7. We can divide it in using
long division of polynomials

λ2 − 6λ + 7
λ− 1 λ3 − 7λ2 + 13λ − 7

λ3 − λ2

−6λ2 + 13λ
−6λ2 + 6λ

7λ − 7
7λ − 7

0
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So we have
λ3 − 7λ2 + 13λ− 7 = (λ− 1)(λ2 − 6λ + 7)

and the roots of λ3 − 7λ2 + 13λ− 7 = 0 (our characteristic equation) are λ = 1 and the roots of
the quadratic λ2 − 6λ + 7. Those roots of the quadratic are

λ =
6±

√
62 − 4(7)

2
=

6±
√

8

2
= 3±

√
8

4
= 3±

√
2

So we now have all the eigenvalues

λ = 1, λ = 3 +
√

2 and λ = 3−
√

2

as required.
So we are finished what was asked.
Notice that to find P so that A = P tDP we would need to find unit eigenvectors for each of

these three eigenvalues — so it would take quite a while. With the help of Mathematica, I can
tell you the answers. For λ = 1, the eigenvector is

− 1√
2
i +

1√
2
j,

for λ = 3 +
√

2 it is
1

2
i +

1

2
j +

1√
2
k

and for λ = 3−
√

2 it is

−1

2
i− 1

2
j +

1√
2
k

So if

P =

−
1√
2

1√
2

0
1
2

1
2

1√
2

−1
2

−1
2

1√
2

 and D =

1 0 0

0 3 +
√

2 0

0 0 3−
√

2


then A = P tDP .

8.7.10 Remark. Theorem 8.7.3 is quite useful because it is so simple to apply. Symmetric
matrices are easy to recognise. The fact that they can be expressed as diagonal matrices in a new
orthonormal basis is useful.

In the case n = 3, this threorem is often called the ‘Principal Axis Theorem’ because of an
interpretation it has in mechanics. In mechanics there is a symmetric matrix called the ‘interia
matrix’ associated with a solid object and it has to do with rotating the object around axes through
the centre of mass. The axes where there will be no wobble or vibration are the axes in the
direction of the eigenvectors. The ‘Principal Axis Theorem’ says there are always 3 such axes
(though there could be more if the object is very symmetric).

The next topic is to do something similar for matrices that are not symmetric. In this case
things become more complicated because there is no longer a ‘Principal Axis Theorem’.
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8.8 Diagonalisable matrices
8.8.1 Definition. An n × n matrix A is called diagonalisable if there is an invertible matrix S
and diagonal matrix D (also n× n matrices) so that

A = SDS−1

The matrix A is called orthogonally diagonalisable if we can take S to be an orthogonal
matrix (so that S corresponds to what we had as P t before).

8.8.2 Remarks. (i) We’ve seen that the orthogonaly diagonalisable matrices are exactly the
symmetric matrices A (those with A = At). That is what Theorem 8.7.3 tells us.

(ii) In the case where A is symmetric we take S = P t where the rows of P are normalised
eigenvectors of A. That means the columns of S are an orthonormal basis made up of
eigenvectors.

(iii) In general if A = SDS−1, the columns of S must be eigenvectors for A.

If, say,

S =

u1 v1 w1

u2 v2 w2

u3 v3 w3


we don’t necessarily have u = u1i+u2j+u3k, v = v1i+v2j+v3k, w = w1i+w2j+w3k
perpendicular to each other (and there is no longer any great advantage in them being
normalised to have length 1).

We could explain what is going on with A = SDS−1 in terms of changing axes from the
usual ones to axes which are parallel to the vectors u, v and w but this brings in ideas that
are rather harder to follow. The new axes are no longer perpendcular axes and all we can
say is that they are in directions that use up all 3 dimensions — so no one is in the plane of
the other 2.

(iv) We can go about trying to write any square matrix as A = SDS−1 in much the same way
as we did before for the case of symmetric matrices.

Step 1 is to find the eigenvalues of A by solving the characteristic equation det(A−λIn) =
0. Things can go wrong at step 1. Even for 2 × 2 matrices, the quadratic equation we get
could have only 1 root (both roots the same) or the roots could be complex numbers.

Complex numbers should not be such a problem, and things certainly work more often if
we deal with comples matrices — matrices where the entries are allowed to be complex
numbers as well as real numbers. However, that would be another level of complication on
top of what we have done and I don’t want to tackle that. It is actually not that much more
difficult, but still it seems better not to go into it for this course.

If step 1 works out and it happes that we get n different real eigenavlues, then we can
succeed in finding D and S so that A = SDS−1. Take D to be the digaional matrix with
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the eigenvalues along the diagonal and S to have the eigenvectors as its columns. (You
need to take the eigenvectors in the same order at the eigenvalues.)

(v) One case where the startegy works out quite nicely is for triagnular matrices (upper or lower
triangular) with all the diagonal entries different.

Take for example

A =

1 2 3
0 4 5
0 0 6


The characteristic equation det(A− λI3) = 0 is very easy to solve in this case because

A− λI3 =

1 2 3
0 4 5
0 0 6

− λ

1 0 0
0 1 0
0 0 1

 =

1− λ 2 3
0 4− λ 5
0 0 6− λ


and so

det(A− λI3) = (1− λ)(4− λ)(6− λ)

Thus the eigenvalues of the (triangular) matrix A are

λ1 = 1, λ2 = 4 and λ3 = 6

There was nothing special about the numbers 1, 2 and 6. For triangular matrices the eigen-
values are always going to work out to be the entries along the diagonal.

To find S we need eigenvectors. So, for λ = 1 we need to row reduce [A − λI3 : 0] =
[A− I3 : 0], which is  0 2 3 : 0

0 3 5 : 0
0 0 5 : 0


Divide first row by 2:  0 1 3/2 : 0

0 3 5 : 0
0 0 5 : 0


Row 2 −3× Row 1:  0 1 3/2 : 0

0 0 1/2 : 0
0 0 5 : 0


Row 2 times 2:  0 1 3/2 : 0

0 0 1 : 0
0 0 5 : 0


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Row 3 −5× Row 2:  0 1 3/2 : 0
0 0 1 : 0
0 0 0 : 0


In equations we have {

v2 + 3
2
v3 = 0

v3 = 0

and that means v3 = 0 and v2 = 0 but v1 free. So (v1, v2, v3) = (1, 0, 0) makes up the first
column of S.

We won’t go through the similar calculations in detail but the results should be (2, 3, 0) for
λ = 4 and (16, 25, 10) for λ = 6. (Any multiples of these vectors would work just as well.)
So if

D =

1 0 0
0 4 0
0 0 6

 , S =

1 2 16
0 3 25
0 0 10


(columns of S are the eigenvectors) we have A = SDS−1.

(vi) There are very simple matrices that are not diagonalisable (and it does not always help to
allow complex numbers). One such example is

A =

[
0 1
0 0

]
We can work out its eigenvalues by looking at the characteristic equation, but acording to
the logic of the example we have just done we know how it will turn ouit. The eigenvalues
are the dioagonal entries (since A is upper triangular) and so we just get λ− 0. If you like
you can say that 0 is an eigenvalue twice.

So if we could write A = SDS−1 the diagonal matrix D has to have the eigenvalues along
the diagonal. In this case that means D has to be the zero matrix. But then SDS−1 works
outr as zero, and that is not the same as A.

So this A is not diagonalisable.

(vii) Now for some comments to explain some reasons that diagonalisable matrices are handy.
At least it is handy if we already know S and D so that A = SDS−1 (with D diagonal as
usual).

It is very easy to calculate powers of A. Look first at A2. We have

A2 = AA = SDS−1SDS−1 = SD(S−1S)DS−1 = SDInDS−1 = SDDS−1 = SD2S−1

A3 = A2A = SD2S−1SDS−1 = SD2(S−1S)DS−1 = SD2InDS−1 = SD2DS−1 = SD3S−1

and it is not hard to see that for evert power An we have

An = SDnS−1
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For small powers it is a minor convenience that powers of diagonal matrices are so easy to
calculate, but for big powers this is a major saving. If (say for the 3× 3 case)

D =

λ1 0 0
0 λ2 0
0 0 λ3


then

Dn =

λn
1 0 0
0 λn

2 0
0 0 λn

3


and your calculator can find powers of numbers.

(viii) Here we discuss the exponential of a matrix, a square matrix.

First we recall briefly that the ordinary exponential ex of a numerical variable x can be
expressed by an infinite series

ex = 1 + x +
1

2!
x2 +

1

3!
x3 + · · ·

and sometimes it is convenient to use the notation exp(x) to mean exactly the same as ex.

This kind of infinite sum needs to be defined using limits. So that series expression for ex

says

exp(x) = ex = lim
N→∞

1 + x +
1

2!
x2 +

1

3!
x3 + · · ·+ 1

N !
xN

A limit like this does not have to exist for every x. It is easy to see that the limit does exist
for x = 0 and e0 = 1, but for the exponential series it is known that the series converges
(quite quickly in fact) for every x.

By analogy with this series for ex, if A is an n× n matrix then we define

eA = lim
N→∞

In + A +
1

2!
A2 +

1

3!
A3 + · · ·+ 1

N !
AN

and we also write this as

exp(A) = eA = In + A +
1

2!
A2 +

1

3!
A3 + · · ·

(an infinite series again, but this time the terms to be added up are matrices).

It would be desirable to prove that this limit always exists, but we will not do it as it
becomes quite easy only with concepts that we won’t develop. What we can do is give
a fairly convincing way to see that eA makes sense if A is diagonalisable, and this also
contains a good way to calculate eA.
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Suppose A = SDS−1 is diagonalisable. We’ve aready seen that Ak = SDkS−1 for all
exponents k = 1, 2, . . .. So we can write

In + A +
1

2!
A2 +

1

3!
A3 + · · ·+ 1

N !
AN

= SS−1 + SDS−1 +
1

2!
SD2S−1 +

1

3!
SD3S−1 + · · ·+ 1

N !
SDNS−1

= S(In + D +
1

2!
D2 +

1

3!
D3 + · · ·+ 1

N !
DN)S−1

Now

lim
N→∞

In + D +
1

2!
D2 +

1

3!
D3 + · · ·+ 1

N !
DN

is easy to calculate. Say we take n = 3 as an illustration and D =

λ1 0 0
0 λ2 0
0 0 λ3

. Then

In + D +
1

2!
D2 +

1

3!
D3 + · · ·+ 1

N !
DN

=

1 0 0
0 1 0
0 0 1

 +

λ1 0 0
0 λ2 0
0 0 λ3

 +
1

2!

λ2
1 0 0

0 λ2
2 0

0 0 λ2
3

 + · · ·+ 1

N !

λN
1 0 0
0 λN

2 0
0 0 λN

3


=

1 + λ1 + 1
2!
λ2

1 + · · ·+ 1
N !

λN
1 0 0

0 1 + λ2 + 1
2!
λ2

2 + · · ·+ 1
N !

λN
2 0

0 0 1 + λ3 + · · ·+ 1
N !

λN
3


So now we can see what the limit of this is as N →∞ and we get

eD =

eλ1 0 0
0 eλ2 0
0 0 eλ3


From this it is a short step (which we will not jutsify totally) that we can multiply the limit
by S on the left and S−1 on the right to get

eA = SeDS−1 = S

eλ1 0 0
0 eλ2 0
0 0 eλ3

S−1

This kind of calculation is valid for diagonalisable matrices of any size (not just 3 × 3 as
we used for illustration).

In the next topic we will see that matrix exponentials can be used fro solving differential
equations.
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8.9 Linear Differential Equations
We will take a rather restricted look at differential equations, aiming for an aspect where matrices
can be used effectively.

A first order linear differential equation with constant coefficients is an equation of the form

dy

dx
− ay = b

where a and b are constants. The unknown in a differential equation is a function y = y(x) and
the reason it is called a ‘differential equation’ is that the equation involves not just the values
of y (and possibly x) but also derivatives of the unknown function. We call this one first order
because the highest derivative that occurs is the first derivative dy/dx of the unknown function.
Later we will talk about second order equations which involve the second derivative d2y/dx2.
We won’t actually deal with higher order equations, but third order ones would have the third
derivative in them, and so on.

Sometimes these differntial equations are called ‘ordinary differential equations’ (abbreviated
ODE sometimes) to distinguish them from ‘partial differential equations’ (abbreviated PDE).
Both are important for many different applications, but we will not deal with PDEs at all and
what w say about ODEs is quite limited. Just to explain what a PDE is, it is an equation where the
unknown is a function of more than one variable and the equation involves ‘partial’ derivatives
of the unknown function. In case you have not heard anything about partial derivatives yet, here
is a very very brief explanation.

We did discuss functions of more than one variable back at the start of this chapter, though we
moved fairly quickly to vector-valued (linear) functions of a vector variable. A vector variable is
the same as several scalar variables at once. As an example, we can have functions

y = f(x1, x2) = x4
1x2 + 3x2

1x
2
2 + x5

1 − x6
2

of two variables. The partial derivative of this with respect to the x1-variable is what you get
by differentiating the right hand side with respect to x1 while treating all the other variables as
constant (in this case only the variable x2 as there are only 2 variables). Another way to explain
it is that we fix some value (constant value) for x2 while we differentiate with respect to x1. The

notation for the partial derivative is
∂y

∂x1

and in the example it turns out to be

∂y

∂x1

= 4x3
1x2 + 6x1x

2
2 + 5x4

1 − 0

On the other hand the partial derivative with respect to x2 is

∂y

∂x2

= x4
1 + 6x2

1x2 + 0− 6x5
2

This brief explanation of how to calculate them is not enough to allow you to understand
the ideas around partial derivatives. But anyhow, a PDE is an equation that involves partial
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derivatives of an unknown function (as well as the function itself and the variables x1, x2 and
more if there are more than 2 variables invloved).

We’ve said that the example equation at the start of this discussion should have constant
coefficients (a restriction that is not really necessary for this case) but we also said it was called
a linear equation. Let’s explain now what we mean by the word linear and why it is used at all.

The reason
dy

dx
− ay = b

is called linear is that the left hand side

dy

dx
− ay

depends on the unknown function y in a linear way. What we mean my this is that if we define
an operation (or transformation) on functions y = y(x) by

Ty =
dy

dx
− ay

then the transformation T has the same key properties we had in Theorem 8.5.1. That is

• T (y + z) = T (y) + T (z) (if y = y(x) and z = z(x) are functions); and

• T (ky) = kT (y) (for y = y(x) a function and k a constant).

Recall that we first introduced linear transformation f : Rn → Rm as arising from an m× n
matrix A by

f(x) = Ax.

Later we showed in Theorem 8.5.1 that the two ‘linearity’ properties were a way to distinguish
linear transformations from more general functions f : Rn → Rm. What we had in Theo-
rem 8.5.1 was a more abstract way of distnguishing linear transformations, one that is not tied to
the use of the standard coordinates, or the standard basis for Rn and Rm.

If you look in the book, you can see that there is a more abstact approach where one can
replace Rn and Rm by ‘vector spaces’ where you can add ‘vectors’ and multiply them by scalars.
In this more abstract approach, our

Ty =
dy

dx
− ay

would fit right in as just one example, and we would have a more complete explantion of why
we call it ‘linear’.

8.9.1 Method of integrating factors. We now explain how to find all the solutions of first order
linear equations

dy

dx
− ay = b

by a method called integrating factors. In fact the method can be applied even if a and b are
not constants but are allowed to be functioms of x, but it is particularly easy to use for the case
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where a and b are constants. For the situation where we are going to bring matrices into our
considerations, the restriction to constant coefficients will be more crucial We now explain how
to find all the solutions of first order linear equations

dy

dx
− ay = b

by a method called integrating factors. In fact the method can be applied even if a and b are
not constants but are allowed to be functioms of x, but it is particularly easy to use for the case
where a and b are constants. For the situation where we are going to bring matrices into our
considerations, the restriction to constant coefficients will be more crucial.

The method is to multiply the equation by

e
R
−a dx = e−ax.

When we do that we get

e−ax dy

dx
− ae−axy = be−ax

and the whole point of this trick is that the left hand side is now the derivative of a product. From
the product rule we have

d

dx

(
e−axy

)
= e−ax dy

dx
− ae−axy

and so the equation we now have can be rewritten

d

dx

(
e−axy

)
= be−ax

So we get

e−axy =

∫
be−ax dx = − b

a
e−ax + C

with C some constant. Multiply now by eax on both sides to get

y = − b

a
+ Ceax

8.9.2 Example. Find all solutions of

dy

dx
− 5y = 3

Solution: Multiply by the integrating factor

e
R
−5 dx = e−5x
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to get

e−5x dy

dx
− 5e−5xy = 3e−5x

d

dx

(
e−5xy

)
= 3e−5x

e−5xy =

∫
3e−5x dx

= −3

5
e−5x + C

y = −3

5
+ Ce5x

Note that the solution involves a constant C which can be anything.

8.9.3 Remark. We say that we have found the general solution y for the differential equation
dy
dx
− 5y = 3. In an application, where we would want to know y precisely, we need some more

information to pin down y.
A fairly typical case is a case where we know one value of y in addition to the fact that y

satisfies the differential equation. This kind of problem is called an ‘initial value problem’. An
example would be to find y given that dy

dx
− 5y = 3 and y(0) = 0. We found above that y has to

have the general form y = −3
5
+ Ce5x for some constant C, but then we can plug in x = 0 to see

that

0 = y(0) = −3

5
+ Ce0 = −3

5
+ C

and that tell us that C = 3/5. The solution to the initial value problem is then

y = −3

5
+

3

5
e5x.

8.9.4 Remark. A consequence of linearity of equations like

dy

dx
− ay = b (8.9.1)

is that there is a relationship between solutions of this equation and solutions of the associated
‘homegeneous equation’ where the right hand side is replaced by 0. That is with

dy

dx
− ay = 0 (8.9.2)

The relationship can be expressed in a few ways. One way is this. If we take one solution
y = y0 for (8.9.1) (the inhomogeneous equation), we know

dy0

dx
− ay0 = b (8.9.3)
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Now subtract (8.9.3) from (8.9.1) and rearrange the result using linearity to get

d

dx
(y − y0)− a(y − y0) = 0

What this says is that two solutions of the inhomogeneous equation (8.9.1) have a difference
y−y0 that is a solution of the associated homogeneous equation (8.9.2). Another way to say that
is that if we somehow know one ‘particular solution’ y0 for (8.9.1), then the general solution y
for (8.9.1) is

y = y0 + (general solution of homogeneous equation (8.9.2))

This gives strategy for solving linear equations. It is not really so useful for these first order
linear equations because the method of integrating factors just works out all the solutions, but it
helps a lot with second order linear problems (which we will come to soon).

The strategy is this:

• somehow find one ‘particular’ solution for the inhomogeneous equation (by guesswork or
systematic guesswork this can often be done);

• look for the general solution of the associated homogeneous equation (with 0 on the right):

(This can be easier to deal with than having to cope with the right hand side at the same
time.)

• the general solution of the inhomegeneous equation is then

(particular solution) + (general solution of homogeneous equation)

8.9.5 Second Order Linear. We now move on to second order linear differential equations. We
will only deal with the case of constant coefficients (which makes things much easier) and we will
also discuss only the homogeneous case. The strategy we have just outlined about ‘particular’
solutions + general solutions of the associated homegeneous equation is a very common way to
approach these second order problems. So we will be dealing with most of the significant issues
by looking at the homogeneous case.

That means we will discuss equations of the type

d2y

dx2
+ b

dy

dx
+ cy = 0

where b and c are constants. We could allow for a constant coefficient in front of the second
derivative term. But, we can divide acrorss by that coefficient to get an equation like the one
above. (Well we can do that if we are not dividing by 0. If the coefficient of d2y/dx2 was 0, then
we would have a first order problem, not a second order one.)

Now there is a trick to reduce to a first order problem, but at the expense of getting two
equations (a system of equations).
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The trick is to introduce a new name y1 for y and a temporary

y2 =
dy

dx
=

dy1

dx

Then
d2y

dx2
=

d

dx

(
dy

dx

)
=

dy2

dx
. We can then rewrite the second order equation as

dy2

dx
+ by2 + cy1 = 0

but we need to keep in mind the connection between y2 and y1 also. We get a system
dy1

dx
= y2

dy2

dx
+ by2 + cy1 = 0

or 
dy1

dx
= y2

dy2

dx
= −cy1 − by2

Using matrices we can write this system as a single equation between two column matrices[
dy1

dx
dy2

dx

]
=

[
y2

−cy1 − by2

]
and using matrix multiplication we can write that as[

dy1

dx
dy2

dx

]
=

[
0 1
−c −b

] [
y1

y2

]
Next we treat the unknown in this equation as a vector valued function

y = y(x) =

[
y1

y2

]
and we agree to say that differnetiating such a function means differentiating each component.
That is we define

d

dx

[
y1

y2

]
=

[
dy1

dx
dy2

dx

]
Now we can write our matrix equation (which came about from the system of two equations) as

a differential equation for the vector-valued unknown y(x) =

[
y1

y2

]
. We get

dy

dx
=

[
0 1
−c −b

]
y
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If we use A to stand for the matrix

A =

[
0 1
−c −b

]
then our equation is

dy

dx
= Ay

To make it look even more like what we had before we write this

dy

dx
− Ay = 0 (8.9.4)

This looks so temptingly similar to the first order linear (homogeneous) equation

dy

dx
− ay = 0

that we might like to try and use an integrating factor method to solve the new version. When a is
a scalar we multiplied by the integrating factor e

R
−a dx = e−ax and so maybe we should multiply

across by e−Ax.
Since we conveniently discussed exponentials of matrices already, we can makes sense of

e−Ax. The order of matrix multiplication matters a lot and we multiply dy
dx
−Ay = 0 by e−Ax on

the left. As e−Ax is a 2× 2 matrix and the equation is an equality of 2× 1 column matrices, we
have to multiply on the left. We get

e−Ax dy

dx
− e−AxAy = e−Ax0

or

e−Ax dy

dx
− e−AxAy = 0

It turns out to be the case that

d

dx
e−Ax = −e−AxA

if we interpret differentiation of a matrix-valued function of x to mean differentiation of each
entry seperately.

Why is that true? Well we are not really in a position to show it in general, but it is easy

enough to see that it works out when A is replaced by a diagonal matrix D. If D =

[
λ1 0
0 λ2

]
then

e−Dx = exp

([
−λ1x 0

0 −λ2x

])
=

[
e−λ1x 0

0 e−λ2x

]
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So

d

dx
e−Dx =

[
d
dx

e−λ1x 0
0 d

dx
e−λ2x

]
=

[
−λ1e

−λ1x 0
0 −λ2e

−λ2x

]
= −

[
e−λ1x 0

0 e−λ2x

] [
λ1 0
0 λ2

]
= −e−DxD

It is possible to come up with a modification of this argument to show d
dx

e−Ax = −e−AxA when
A = SDS−1 is diagonalisable, but actually it is true for every square matrix A.

Using d
dx

e−Ax = −e−AxA we can rewrite our equation (8.9.4) as

e−Ax dy

dx
+

d

dx

(
e−Ax

)
y = 0 (8.9.5)

What we need now is a product rule for differentiating matrix products. We will not check
it works, but it is true that if U = U(x) and V = V (x) are matrix functions so that the matrix
product UV makes sense, then

d

dx
(UV ) =

(
dU

dx

)
V + U

dV

dx

It is important to keep the order here so that U always stays to the left of V .
Using this product rule, we can rewrite (8.9.5) as

d

dx

(
e−Axy

)
= 0

and it should be clear that the only vector functions that have derivative 0 =

[
0
0

]
are constants.

So we get

e−Axy = constant vector =

[
c1

c2

]
To find y, we multiply by the inverse matrix of e−Ax, which turns out to be eAx. We get

y =

[
y1

y2

]
= eAx

[
c1

c2

]
(8.9.6)

as the solution of our system of differential equations (8.9.4).
Of course we should work this out further so it does not involve the matrix exponential. Let

us assume (to make our life easier) that we are always in the case where A is diagonalisable. So

we can write A = SDS−1 with D =

[
λ1 0
0 λ2

]
diagonal. Then

Ax = SDS−1x = S(Dx)S−1
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(because x is a scalar) and Dx =

[
λ1x 0
0 λ2x

]
diagonal. We have then

eAx = SeDxS−1 = S

[
eλ1x 0
0 eλ2x

]
S−1

When we go to use this in (8.9.6) the first thing will be to multiply out

S−1

[
c1

c2

]
It will make life easier for us if we just write the result as[

α1

α2

]
= S−1

[
c1

c2

]
for two new constants α1 and α2. So now out solution (8.9.6) comes to

y =

[
y1

y2

]
= eAx

[
c1

c2

]
= S

[
eλ1x 0
0 eλ2x

] [
α1

α2

]
= S

[
α1e

λ1x 0
0 α2e

λ2x

]
Recall now, finally, that the columns of S are eigenvectors for A belonging to the eigenvalues λ1

and λ2. So S has the form
S =

[
v1 v2

]
where v1 and v2 are the eigenvectors written as columns. That means that the solution works out
as

y = α1e
λ1xv1 + α2e

λ2xv2

We now summarise what all these calculations show:

8.9.6 Theorem. Assume that A =

[
a11 a12

a21 a22

]
is a diagonalisable matrix, with eigenvalues λ1

and λ2 and corresponding eigenvectors v1 and v2. Then the solutions to the system of linear
differential equations 

dy1

dx
= a11y1 + a12y2

dy2

dx
= a21y1 + a22y2

are given by

y =

[
y1

y2

]
= α1e

λ1xv1 + α2e
λ2xv2

where α1, α2 are arbitrary constants.
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8.9.7 Example. We did start with a second order equation

d2y

dx2
+ b

dy

dx
+ cy = 0

and we rewrote it as a system
dy

dx
=

[
0 1
−c −b

]
y

where

y =

[
y1

y2

]
=

[
y

dy/dx2

]
According to the above, we need the eigenvalues and eigenvectors of the matrix

A =

[
0 1
−c −b

]
So we should look at the characteristic equation det(A− λI2) = 0. We have

A− λI2 =

[
0 1
−c −b

]
− λ

[
1 0
0 1

]
=

[
−λ 1
−c −b− λ

]
and so

det(A− λI2) = −λ(−b− λ) + c = λ2 + bλ + c

Notice then the close similarity between the differential equation and the characteristic equa-
tion. Replace the second derivative term by λ2, the derivative term by λ and the y term by 1.

To be specific we take the example

d2y

dx2
− 5

dy

dx
+ 4y = 0

so the the characteristic equations is

λ2 − 5λ + 4 = 0.

This factors as (λ− 1)(λ− 4) = 0 and so the eigenvalues are λ = 1 and λ = 4.

According to the recipe we also need the eigenvectors. We might say v =

[
v1

v2

]
for λ = 1

and w =

[
w1

w2

]
for λ = 4. Then we get

[
y
dy
dx

]
=

[
y1

y2

]
= α1e

x

[
v1

v2

]
+ α2e

4x

[
w1

w2

]
We don’t really need to work out the eigenvectors in this case because we can see that

y = α1v1e
x + α2w1e

4x
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and we can just regard α1v1 and α2w1 as some constants. We get

y = C1e
x + C2e

4x

for constants C1 and C2, where λ1 = 1 and λ2 = 4 are the roots of the equation λ2 − 5λ + 4 = 0
that comes from the equation.

It is worth pointing out though that we have ignored the possibility that the quadratic might
have complex roots (or just one root).

8.9.8 Example. Here is a somewhat applied example.
Two competing species live on the same small island and each one affects the growth rate of

the other (by competing for the same food, say). If thir populations at time t are x1(t) and x2(t),
a model for their growth rates says{

x′1(t) = −3x1(t) + 6x2(t)
x′2(t) = x1(t)− 2x2(t)

At time t = 0, x1(0) = 500 and x2(0) = 200.
Find x1(t) and x2(t).

Solution: We can write the model in matrix form as[
x′1(t)
x′2(t)

]
=

d

dt

[
x1(t)
x2(t)

]
=

[
−3 6
1 −2

] [
x1(t)
x2(t)

]

We need the eigenvalues and eigenvectors for A =

[
−3 6
1 −2

]
in order to write down the general

solution of this system of first order linear differential equations (and later we need to use the
information about x1(0) and x2(0) to find the constants).

We have

A− λI2 =

[
−3 6
1 −2

]
− λ

[
1 0
0 1

]
=

[
−3− λ 6

1 −2− λ

]
and so

det(A− λI2) = (−3− λ)(−2− λ)− 6 = (λ + 3)(λ + 2)− 6 = λ2 + 5λ + 6− 6 = λ(λ + 5)

The eigenvalues are λ1 = 0 and λ2 = −5.
To find the eigenvalue for λ1 = 0 we should row reduce [A : 0]. The answer should be the

vector
[
2
1

]
.

For λ2 = −5, we have A− λ2I2 = A + 5I2 =

[
2 6
1 3

]
and we should row reduce

[
2 6 : 0
1 3 : 0

]
→

[
1 3 : 0
1 3 : 0

]
→

[
1 3 : 0
0 0 : 0

]
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So that eigenvector is
[
−3
1

]
.

The general solution is then

[
x1

x2

]
=

[
x1(t)
x2(t)

]
= α1e

0

[
2
1

]
+ α2e

−5t

[
−3
1

]
=

[
2α1 − 3α2e

−5t

α1 + α2e
−5t

]

If we put t = 0 we are supposed to get

[
500
200

]
=

[
x1(0)
x2(0)

]
=

[
2α1 − 3α2

α1 + α2

]

We then have 2 simultaneous equations to solve for α1 and α2. We could set that up as a matrix
to be row reduced, but anyhow the solution is α1 = 220, α2 = −20.

So the answer to the example is

x1(t) = 440 + 60e−5t

x2(t) = 220− 20e−5t

(Aside: I’m not sure how realistic the model was since the value of x2(t) becomes neagtive
after some time t, and populations can’t be a negative number.)

8.10 Least square fit

We now discuss a topic that is rather important for applications.
Suppose we do an experiment and find some data points that we know (from the theory of

the experiment) are supposed to lie on a line. Say we found n data points (x1, y1), (x2, y2),
. . . (xn, yn) and they are supposed to lie on a line y = mx + c. How do we find the right line?

If we had two points we would just find the line through the two points, but we will often
have more than two data obersvations and (unless we fiddled the data) it is unlikely they will be
on any one line. What then is the ‘best’ estimate of the line?

Well, that does depend on what you mean by ‘best’ but the least squares approach is often
considered to be an appropriate interpretation of best. What it means is to choose the line that
makes the sum of the square of the vertical distance from the data points to the line as small as
possible. Here is a picture that is supposed to show the idea. The blobs represent 4 data points
and the line should be so that the sum of the squares of the vertical segments joining the blobs to
the line is smaller than for any other line.
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This is not the only interpretation of ‘best’ that could be considered. It is reasonably appro-
priate if the data is such that the x-values x1, x2, . . . , xn are correct while the experimental errors
are in the measurements of the y-values y1, y2, . . . , yn. The idea is that the ‘correct’ y-values are
y∗1, y

∗
2, . . . , y

∗
n and that these are so that the ‘corrected’ data points

(x1, y
∗
1), (x2, y

∗
2), . . . , (xn, y

∗
n)

lie on the ‘correct’ line. Moreover the most likely line is the one where we should make the
smallest overall correction to the data — that is the one that make

(y1 − y∗1)
2 + (y2 − y∗2)

2 + · · ·+ (yn − y∗n)2

as small as possible.
To make the notation more convenient we will rewrite the equation of the line as y = β0+β1x

(so β0 is the constant term and β1 is the coefficient of x or the slope). If all the data points were
on a line, it would be the line that solved all the equations

β0 + β1x1 = y1

β0 + β1x2 = y2

...
β0 + β1xn = yn

In matrix form we can write this as 
1 x1

1 x2
...
1 xn


[
β0

β1

]
=


y1

y2
...

yn


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or
Xβ = y

where we use the notation

X =


1 x1

1 x2
...
1 xn

 , β =

[
β0

β1

]
and y =


y1

y2
...

yn


As we said already, once n > 2 we have too many equations for just 2 unknowns β0 and β1.

There is very little chance that there is any solution for β. The approach is to modify y to get y∗

so that we do get a solution to
Xβ = y∗

and
‖y − y∗‖2 = (y1 − y∗1)

2 + (y2 − y∗2)
2 + · · ·+ (yn − y∗n)2

is as small as possible.
We’ll take n = 3 for the purpose of explaining how that is done. We need some understanding

of where we are allowed to take y∗ so as to make Xβ = y∗ solvable. We can write

Xβ =

1 x1

1 x2

1 xn

[
β0

β1

]
= β0

1
1
1

 + β1

x1

x2

xn


What we can say then is that as β0 and β1 change we always find that Xβ lies in the plane in
space R3 through the origin and containing the two vectors1

1
1

 = i + j + k and

x1

x2

xn

 = x1i + x2j + x3k

So the best choice of y∗ will be the point in that plane you get by dropping a perpendicular from
y onto the plane. (That will give the point y∗ on the plane closest to y.)

We can go about calculating that point, but there is a trick to avoid that. The difference y−y∗

should be a vector perpendicular to the plane. So y − y∗ is perpendicular to both i + j + k and
to x1i + x2j + x3k. We can write that in matrix notation as[

1 1 1
x1 x2 x3

]
(y − y∗) =

[
0
0

]
= 0

and that is just X t(y − y∗) = 0. So we find that

X ty = X ty∗

So instead of finding y∗ and then solving

Xβ = y∗
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we multiply this equation by X t on the left. That gives

X tXβ = X ty∗

which is the same as
X tXβ = X ty

Now X tX is just a 2× 2 matrix and X ty is a 2× 1 matrix. We are down to 2 equations in 2
unknowns β0 and β1. They are known as the normal equations.

Summary: To find the line y = β0 + β1x that is the best least squares fit to the data points

(x1, y
∗
1), (x2, y

∗
2), . . . , (xn, y

∗
n)

solve the normal equations
X tXβ = X ty

where

X =


1 x1

1 x2
...
1 xn

 , β =

[
β0

β1

]
and y =


y1

y2
...

yn


8.10.1 Example. Find the equation of the line that is the best least squares fit to the data points

(2, 1), (5, 2), (7, 3), (8, 3)

Solution: We take

X =


1 x1

1 x2
...
1 xn

 =


1 2
1 5
1 7
1 8

 , β =

[
β0

β1

]
and y =


y1

y2
...

yn

 =


1
2
3
3


and solve the normal equations X tXβ = X ty.

We need to calculate

X tX =

[
1 1 1 1
2 5 7 8

]
1 2
1 5
1 7
1 8

 =

[
4 22
22 142

]

and

X ty =

[
1 1 1 1
2 5 7 8

]
1
2
3
3

 =

[
9
57

]
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And now solve [
4 22
22 142

] [
β0

β1

]
=

[
9
57

]
We can do that by row reducing[

4 22 : 9
22 142 : 57

]
→

[
1 11/2 : 9/4

22 142 : 57

]
→

[
1 11/2 : 9/4
0 21 : 15/2

]
→

[
1 11/2 : 9/4
0 1 : 5/14

]
→

[
1 0 : 2/7
0 1 : 5/14

]
So β0 = 2/7 and β1 = 5/14. The line is

y =
2

7
+

5

14
x

and here is a picture of the line with the points

8.11 Markov Matrices
One thing we could have mentioned earlier is that a matrix always has the same eigenvalues as
its transpose. If A is an n×n (square) matrix we do know (from 6.4 (iv)) that det(At) = det(A).
It follows quite easily that A and At have the same chacteristic equation. The reason is that

At − λIn = At − λI t
n = (A− λIn)t

and so det(At − λIn) = det(A − λIn). So the chacteristic equation det(At − λIn) = 0 is the
same equation as det(A− λIn) = 0.

One place where this little fact is useful is in studying Markov matrices. Markov matrices
are square matrices which have

• all entries ≥ 0, and

• in each column, the sum of the entries in the column is 1
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This is a 3× 3 Markov matrix

A =

0.2 0 0.4
0.2 0.5 0.1
0.6 0.5 0.5


If we take the transpose of this Markov matrix and multiply it by the column of all 1’s, we find

At

1
1
1

 =

0.2 0.2 0.6
0 0.5 0.1

0.4 0.1 0.5

1
1
1

 =

1
1
1


(because the row sums in the transpose are all equal 1).

What this shows is that if A is a Markov matrix, then the column of all 1’s is an eigenvector
of At with the eigenvalue 1. So there must be an eigenvector for the matrix A with the eigenvalue
1, that is a vector v with

Av = v

That vector v fixed by A is rather important in considerations of Markov matrices. There are
many applications of Markov matrices (for example in finding what happens with genetic types
over many generations) but we will stop our study of linear algebra in this module here, without
looking into these interesting topics!

TO BE checked
Richard M. Timoney April 20, 2008
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