
Chapter 6. Determinants
This material is in Chapter 2 of Anton & Rorres (or most of it is there).

6.1 Introductory remarks
The determinant of a square matrix A is a number det(A) associated with the matrix A, and one
of its main propertiues is that A−1 exists exactly when det(A) 6= 0.

Unfortunatley the calculation of det(A), and the explanation of what it is, turns out to be
tricky. Certainly it is harder than the trace of A. Very vaguley det(A) is the number you end up
dividing by when you compute A−1 (and that ties in with the fact that you can’t divide by it if it
is zero, so that the inverse matrix of A won’t make sense if det(A) = 0).

We can make that rather less vague for 2× 2 matrices

A =

[
a11 a12

a21 a22

]
In this case you can calculate A−1 as a formula. You can do it either by row-reducing

[A | I2] =

[
a11 a12 : 1 0
a21 a22 : 0 1

]
and you should end up with

A−1 =
1

a11a22 − a21a21

[
a22 −a12

−a21 a11

]
Having got this formula somehow, you could also check that it works out. (To do that,

multiply the supposed A−1 by A to see you do indeed get I2.)

6.1.1 Definition. For a 2 × 2 matrix A =

[
a11 a12

a21 a22

]
, the determinant of A is defined to be the

number
det(A) = a11a22 − a21a21

In words, this is the product of the two diagonal entries minus the product of the two off-
diagonal entries.

It is possible to work out a formula for the inverse of a 3× 3 matrix, though it would is quite
a bit more messy. There are a number of ways to say what det(A) is for matrices that are larger
than 2 × 2. I think there is no one way that is really neat. All the approaches either use a lot of
ancillary theory, or else have some significant drawback. The way we will choose now is easy
enough to explain, but tricky enough to use as a way of showing that determinants do what they
are meant to do. In other words proofs are not so nice when we start the way we are going to do,
but we won’t really notice that problem because we will skip the proofs!
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6.2 Cofactor expansion approach to determinants
A quick way to define a determinant is via what is called cofactor expansion along the first row.
For 3× 3 matrices this means

det

a11 a12 a13

a21 a22 a23

a31 a32 a33

 = a11 det

[
a22 a23

a32 a33

]
− a12 det

[
a21 a23

a31 a33

]
+ a13 det

[
a21 a22

a31 a32

]
In words the idea is to multiply each entry of the first row times the determinant of the matrix
you get by convering over the first row and the column of the entry. Then add these up with
alternating signs +, −, + . . . .

When we start with a 3× 3 matrix A, we end up with det(A) in terms of 2× 2 determinants.
And we already know how to evaluate them.

For the 4× 4 case, this idea works out like this

det


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 = a11 det

a22 a23 a24

a32 a33 a34

a42 a43 a44

− a12 det

a21 a23 a24

a31 a33 a34

a41 a43 a44



+a13 det

a21 a22 a24

a31 a32 a34

a41 a42 a44

− a14 det

a21 a22 a23

a31 a32 a33

a41 a42 a43


You should note the alternating signs and that what we now end up with is 4 determinants of size
3 × 3 to calculate. If we expand each of these via cofactors along the first row, we end up with
12 = 4× 3 determinants of size 2× 2 to calculate.

If we use the same approach for 5 × 5 determinants, we end up with even more work to do.
So this method may be simple enough in principle but it is laborious. We will soon explain a
more efficient approach for large matrices.

6.3 A formula for determinants
While the above explanation is fine, it is what is called a reduction formula for a determinant.
It says how to work out a determinant (of an n × n matrix A with n ≥ 3) in terms of smaller
determinants. When you keep using the reduction formula enough you get down to 2× 2 deter-
minants and we have a nice tidy formula for them. You might like to have a formula for bigger
determinants, not a reduction formula.

Such a thing is available and is described in the book by Anton & Rorres in §2.4. One snag
with it is that it requires a bit of theory to explain how it works. I’ll outline it below.

In fact the cofactor expansion idea (the reduction formula) works out for 2× 2 determinants
as well. If you wanted to use it on a 2 × 2 determinant, it would tell you the answer in terms of
1× 1 determinants! It would say

det

[
a11 a12

a21 a22

]
= a11 det[a22]− a12 det[a21]
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and we might have to worry a bit about what the 1× 1 determinants det[a22] and det[a21] might
mean. Well, a 1× 1 matrix has just one entry, one number in it. If you want to be fussy you can
insist that a 1 × 1 matrix is a matrix and an number is a scalar, not the same as a matrix. But
actually there is rarely a reason to be so fussy and we can usually safely ignore the difference
between a 1 × 1 matrix and a scalar. The determinant of a 1 × 1 matrix is just that scalar. Then
the reduction formula works out the right determinant for 2× 2 matrices!

Technically, we should have said what determinants of 1 × 1 matrices are and starting with
2 × 2 meant that we were not being totally complete. So we’ve filled in that small detail now,
though it is not real important.

Back to a formula for general determinants. If you think about it for a while, it is not hard to
see that what you get when you expand out det(A) completely is a sum of products of entries of
A times ±1. In fact what happens is that, if A is an n × n matrix, then all products of n entries
of A show up which satisfy the restriction that the product contains just one etry from each row
of A and one from each column. This is kind of apparent from the cofactor expansion approach.
At the beginning we get an entry from the first row times a determinant of a matric where the
first row is no longer there (and the column of the entry you have is also no longer present in the
smaller determinant).

By arguing in this way, you can establish that what you would get if you multiplied out all
the reduction formulae for

det


a11 a12 · · · a1n

a21 a22 a2n
... . . .

an1 an2 ann


would be a big sum of terms of the form

±a1j1a2j2 · · · anjn

where j1, j2, . . . , jn are all of the n column numbers in some order.
So j1, j2, . . . , jn must be all n of the column numbers 1, 2, . . . , n, but not necessarily in that

order. In fact all possible orders appear. The possible way to reorder 1, 2, . . . , n are called the
permuations of these n numbers. It is possible to see fairly easily that the total number of these
permuations is a number called ‘n factorial’. We write in as n! and it is the product of the
numbers 1, 2, . . . , n.

n! = n(n− 1)(n− 2) · · · (3)(2)(1)

So this approach gives a formula for the determiant, a formula with n! terms. One snag is
that n! gets big pretty fast.

3! = 6, 5! = 120, 10! = 3628800

So for a 10 × 10 matrix this formula would have more than 3.6 million terms, a lot. Even for
5× 5, you’d have more than 100 terms, each involving a product of 5 terms.

Then there is the problem of which terms get a plus sign and which get a minus. There is a
theory about this, and it comes down to something called the ‘sign’ of a permutation. It would
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be a digression for us to try and explain what that is in a satisfactory way. So here is a quick
explanation. Srtaing with a permutation

j1, j2, . . . , jn

of 1, 2, . . . , n, (so that j1, j2, . . . , jn are all the first n whole numbers written in some order), we
are going to write down a matrix called the matrix for this permuation. In each row (and column)
the permutation matrix has just one single entry equal to 1, all the others are 0. To be specific, in
row number i, there is a 1 in column ji, and zeros elsewhere. (Another way to say it is that there
are entries = 1 at the positions (i, ji) for i = 1, 2, . . . , n, but every other entry is 0.) The sign of
the permutation is the same as the determinant of its permuatation matrix.

Well, that is a true statement, but it is a bit unsatisfactory. Our long formula for a determinant
still has some determinants in it, the ones that give the ±1 signs.

There is a way to say how the whole formula works out for 3 × 3 matrices, and it is a fairly
satisfactory way of working out 3 × 3 determinants. The drawback is that it does not extend to
bigger determinants in any very similar way.

Starting with a 3× 3 matrix a11 a12 a13

a21 a22 a23

a31 a32 a33


write it down with the first two columns repeated

a11

""EE
EE

EE
EE

a12

""EE
EE

EE
EE

a13

""EE
EE

EE
EE

||y
y

y
y

a11

||y
y

y
y

a12

||y
y

y
y

a21

""EE
EE

EE
EE

a22

||y
y

y
y

""EE
EE

EE
EE

a23

||y
y

y
y

""EE
EE

EE
EE

a21

||y
y

y
y

a22

a31 a32 a33 a31 a32

Add the products diagonally to the right and subtract those diagonally to the left as indicated by
the arrows

det

a11 a12 a13

a21 a22 a23

a31 a32 a33

 = a11a22a33 + a12a23a31 + a13a21a32

−a13a22a31 − a11a23a32 − a12a21a33

Notice that there are the correct number of terms here (3! = 6). And each product of 3 has
one entry from each row, one entry from each column.

As mentioned above, this method of repeating the first and second columns does not work
for sizes apart from 3× 3, and there is nothing really like this for 4× 4 or bigger matrices. The
cofactor expansion method does work for any size of (square) matrix.
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6.4 Properties of determinants
Here are the key properties of dertminants. We’ll explain why they are true in the case of 2 × 2
determinants, and give short shift to the explanations of why these properties still work for n×n
determinants.

(i) det(I2) = 1

This is pretty easy to see.

(ii) det(AB) = det(A) det(B)

Proof. We should show that this is true for any 2 × 2 matrices A and B, without knowing
what the entries are in the matrices. What we do is write out the matrices

A =

[
a11 a12

a21 a22

]
, B =

[
b11 b12

b21 b22

]
, AB =

[
a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

]
Then multiply out

det(AB) = (a11b11 + a12b21)(a21b12 + a22b22)− (a11b12 + a12b22)(a21b11 + a22b21)

and
det(A) det(B) = (a11a22 − a12a21)(b11b22 − b12b21)

to show that the answers are the same.

It is not really hard to do, though maybe not worth writing the remaining steps out. You
might like to convince yourself that it does work out as claimed.

(iii) det(A−1) =
1

det(A)

Proof. Using the previous result

det(A−1) det(A) = det(A−1A) = det(I2) = 1

and so det(A−1) = 1/ det(A).

(iv) det(At) = det(A)

This is not at all hard (for the 2× 2 case).

(v) The determinants of elementary matrices are as follows

1′. E the elementary matrix for the row operation “multiply row 1 by k 6= 0”

E =

[
k 0
0 1

]
, det(E) = k.
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1′′. E the elementary matrix for the row operation “multiply row 1 by k 6= 0”

E =

[
1 0
0 k

]
, det(E) = k.

2′. E the elementary matrix for the row operation “add k times row 2 to row 1”

E =

[
1 k
0 1

]
, det(E) = 1.

2′′. E the elementary matrix for the row operation “add k times row 1 to row 2”

E =

[
1 0
k 1

]
, det(E) = 1.

3. E the elementary matrix for the row operation “swop rows 1 and 2”

E =

[
0 1
1 0

]
, det(E) = −1.

For general n × n determinants, all these statements remain true, though the last one needs
to be restated:

6.4.1 Lemma. The determinants of elementary matrices are as follows

1. E the elementary matrix for the row operation “multiply a row by k 6= 0” has det(E) = k.

2. E the elementary matrix for the row operation “add k times one row to a different row”
has det(E) = 1.

3. E the elementary matrix for the row operation “swop two specified rows” has det(E) =
−1.

This leads us to a way to calculate n × n determinants. Starting with the matrix A, do row
operations on A to row reduce A. At the first row operation we are replacing the matrix A by
EA for some elementary matrix A. So the determinant of the matrix we have changes to

det(EA) = det(E) det(A)

We’ve seen that det(E) is easy to figure out. So it is quite easy to keep track of the changes in
the determinant as we do each row operation. (We’ll organise this better soon.)

If we keep doing row operations, keeping track of how the determinant changes as we go
along, we will know that if A is invertible row operations will lead to the identity matrix. And
that has determinant 1.

On the other hand if the reduced row echelon form of the n × n matrix A is not the n × n
identity matrix In, then it is easy to see it is a matrix with a row of zeros in the last row (and
maybe rows of zeros above that too). Now it is not all that hard to see that a matrix with a row
of zeros has zero determinant. So it follows that if A is not invertible then det(A) = 0. We can
state the combination of that fact with the fact that det(A−1) = 1/ det(A) (so that det(A) can’t
be zero if A is invertible) as a theorem.
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6.4.2 Theorem. If A is an n× n matrix, then the following are two equivalent statements about
A:

(a) A is invertible

(b) det(A) 6= 0.

This can then be added as an extra part to Theorem 5.13.2.
Here now comes a theorem listing the properties of determinants, including tidier statements

of what was mentioned above about using row operations to evaluate determinants. The state-
ments are listed in an order where a proof is possible, even though we will not really prove them
all. The list of properties is also extended beyond what we have said above.

6.4.3 Theorem. (Simplification rules and properties of determinants) Let A be an n× n matrix
throughout.

(i) Adding a multiple of one row of A to another row results in a matrix with unchanged
determinant.

(ii) Factoring a scalar k 6= 0 out from a single row of A divides the determinant by k. That is

det



a11 a12 · · · a1n

a21 a22 a2n
...

ai1 ai2 · · · ain
...

an1 an2 · · · ann


= k det



a11 a12 · · · a1n

a21 a22 a2n
...

ai1/k ai2/k · · · ain/k
...

an1 an2 · · · ann


(iii) Swopping two rows of A changes the determinant by a factor −1.

(iv) If A has a row of all zeros, then det(A) = 0.

(v) If A has two rows where one row is a multiple of the other, then det(A) = 0.

(vi) If A is upper triangular or if A is lower triangular then det(A) is the product of the diagonal
entries.

(vii) An efficient way to work out det(A) is to use Gauss-Jordan elimination to row reduce A to
row-echelon form, keeping track of how the determinat changes after each row operation
(see properties (i) – (iii)). Notice that the row-echelon form will be upper triangular with
either all 1’s on the diagonal or some diagonal entries are 0 (so that the determinant of the
row-echelon form is 1 in the case where A is invertible and 0 if A is not invertible).

(viii) A is invertible exactly when det(A) 6= 0. (That’s Theorem 6.4.2.)

(ix) det(AB) = det(A) det(B) if B is n× n.
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(x) det(A−1) = 1/ det(A) if A is invertible.

(xi) det(At) = det(A).

(xii) Properties (i) – (v) remain true if the word “row” is replaced by column everywhere. Thus
one can also simlify determinants by using colimns operations, as well as or instead of row
operations.

Proof. This is not really a proof, just some remarks about how a proof could go. Some of the
easier steps are done more or less in full, but other parts if the argument are missing quite a few
details.

The messiest part of the proof is to show properties (i) – (iii). It is possible to show them
starting from the definition we gave, defining det(A) by cofactor expansion along the first row,
but the proof is a bit messy. For that reason they are often proved via the machinery with permu-
tations that we mention above. However, there is quite a bit of work needed to straighten out the
theory needed to understand the sign of a permutation. So that method is not so simple either.

What (i) – (iii) tell you is that det(EA) = det(E) det(A) for an elementary matrix E.
Property (iv) is easy enough using (ii) — just factor 2 out of the row of zeros. On the one

hand it has no effect on the matrix and so leaves the determinant unchanged. But by (ii) it has to
change the determinant by a factor of 2. The only way both can be true is if det(A) = 0.

Property (v) is quite easy from (i) and (iv).
For (vi), the lower triangular case is fairly obvious from the cofactor expansion definition.

For the upper triangular case, it is a bit less obvious but still not real hard.
The fact the (vii) works as a method follows from the previous results. The fact that it is

efficient requires an interpretation. What it means is that the number of aritmetic operations
innvolved in carrying out the method is much smaller than would be involved in expanding the
determinant by cofactors — if n is anyway big.

(viii) follows from an analysis of the method (vii) together with the fact we know already that
invertible matrices row-reduce to the identity.

For (ix) we can use this again. If A is invertible, then there are elementary row operations to
row-deduce it to the identity. That means there is a sequence of row operatiosn, a corresponding
sequence of elementary matrices E1, E2, . . . , Er so that

ErEr−1 . . . E2E1A = In

That tells us
A = E−1

1 E−1
2 . . . E−1

r

and from (i) – (iii), we also have

det(Er) det(Er−1) · · · det(E2) det(E1) det(A) = det(In) = 1

So
det(A) =

1

det(E1) det(E2) · · · det(Er)
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If B is also invertible then we can make a similar statement about det(B) and then show (ix).
If one of A or B is not invertible, we need a slightly different argument to show AB can’t be
invertible either and so det(AB) = 0.

A proof for (x) can be just the same as the proof we gave in the 2× 2 case.
For (xi) we can use the idea about products of elementary matrices again, and first check that

det(Et) = det(E) when E is elementary. In the case of invertible A,

A = E−1
1 E−1

2 . . . E−1
r ⇒ At = (E−1

r )t(E−1
r−1)

t . . . (E−1
1 )t

and so

det(At) = det(E−1
r ) det(E−1

r−1) . . . det(E−1
1 ) =

1

det(E1) det(E2) · · · det(Er)
= det(A)

The last property (xii) is a consequence of (xi), since column operations on A correspond to
row operations on At.

6.4.4 Examples. 1. Find det

0 1 5
1 2 4
4 5 7

 via row reduction.

det

0 1 5
1 2 4
4 5 7

 = − det

1 2 4
0 1 5
4 5 7


= − det

1 2 4
0 1 5
0 −3 −9


= − det

1 2 4
0 1 5
0 0 6


= −6 det

1 2 4
0 1 5
0 0 1

 = −6

2. Show det

 1 1 1
x y z
x2 y2 z2

 6= 0 if x, y and z are all different.

(Notice that the determinant would certainly be zero if any two of x, y and z were equal.
In this case the matrix would have tow identitcal columns, and so determinant zero.)

To solve this we will first transpose the matrix and then use row operations on the transpose.
We need not do this as we are allowed use column operations on the original matrix, but
we are more used to row operations.
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det

 1 1 1
x y z
x2 y2 z2

 = det

1 x x2

1 y y2

1 z z2


= det

1 x x2

0 y − x y2 − x2

1 z z2


= det

1 x x2

0 y − x y2 − x2

0 z − x z2 − x2


= det

1 x x2

0 y − x (y − x)(y + x)
0 z − x (z − x)(z + x)


= (y − x) det

1 x x2

0 1 y + x
0 z − x (z − x)(z + x)


= (y − x)(z − x) det

1 x x2

0 1 y + x
0 1 z + x


= (y − x)(z − x) det

1 x x2

0 1 y + x
0 0 z + x− (y + x)


= (y − x)(z − x) det

1 x x2

0 1 y + x
0 0 z − y


= (y − x)(z − x)(z − y)

If x, y and z are all different, then all 3 factors in the determinant are different from 0. So
their product is not zero.

By the way, this determinant we just worked out has a special name. It is called a Vander-
monde determinant.

6.5 Geometrical view of determinants

For 2× 2 matrices and 3× 3 matrices, there is a graphical interpretation of the determinant.
Consider the case of 2 × 2 matrices first, and think of the rows of the matrix as components

of vectors in the plane R2.

det

[
v1 v2

w1 w2

]
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So we are thinking of the two vectors v = (v1, v2) = v1i+v2j and w = (w1, w2) = w1i+w2j. If
we draw the two vectors from the origin (the position vectors of the points (v1, v2) and (w1, w2))
and fill in the parallelogram that has v and w as sides, then

det

[
v1 v2

w1 w2

]
= ±(the area of the parallelogram)

�
�
�
�
�
��w
���������

�
�
�
�
�
�

���������1
vθ

B
B
B
BB

The area of that parallelogram is

base × perpendicular height = ‖v‖(‖w‖ sin θ)

We could work out sin θ by first working from v ·w = ‖v‖‖w‖ cos θ, and then using sin2 θ+
cos2 θ = 1. Here is an alternative way that needs less algebra.

We know sin θ = cos
(

π
2
− θ

)
. The vector

p = w2i− w1j

has the same length ‖p‖ =
√

w2
2 + w2

1 = ‖w‖ as w and it is perpendicular to w because

p ·w = w2w1 − w1w2 = 0.

There are two vectors in the plane with that length and direction perpendicular to w.

�
�
�
�
�
��w

HHHH
HHj

H
HHHHHY

���������1
v

p
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In our picture, the one that makes an angle (π/2) − θ with v is p (but that depends on the fact
that w is θ radians anticlockwise from v — if it was clockwise then the right one would be −p
instead).

So we have
v · p = ‖v‖‖p‖ cos

(π

2
− θ

)
= ‖v‖‖w‖ sin θ

and so
v1w2 − v2w1 = ‖v‖‖w‖ sin θ = area of parallelogram

det

[
v1 v2

w1 w2

]
= the area of the parallelogram

As we mentioned, we don’t always get this with a plus sign. Sometimes we get a minus
(when w is clockwise from v).

Notice that if v is parallel to w, or if they are in eactly opposite directions, the parallelogram
collapses to a line, and so we get zero area. In this case one row of the matrix is a multiple of the
other.

When we move to 3 dimensions, we can get a similar result, but we need a three dimensional
version of a parallelogram. Three vectors in space will span a parallelopiped. Its a shape like a
box without right angles between the sides.

All the faces are parallelograms, and opposite faces are parallel to one another. If we think of the
origin as one corner, the 3 sides emanating from there could represent three vectors u, v and w
in space.

On the other hand if we start with 3 vectors u = u1i + u2j + u3k, v = v1i + v2j + v3k and
w = w1i + w2j + w3k, then we can draw them all as arrows starting from the origin. Then we
can make a parallelopiped using those as three of the edges.

The link with determinants is

det

u1 u2 u3

v1 v2 v3

w1 w2 w3

 = ±(volume of the parallelopiped) (1)

The simplest way to explain why this fact is true involves the idea of the cross product of
vectors in space. We’ll come to that later, but we will use the facts abour areas and volumes in
some simple examples first.
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6.5.1 Example. Find the volume of the parallelopiped in space where one corner is at (0, 0, 0)
and the 3 vectors

u = 4i− 2j + k

v = 5i + j− k

w = i− j + k

are parallel to three of the edges.
Answer is

det

4 −2 1
5 1 −1
1 −1 1

 = ±(volume)

So the absolute value of the determinant gives the volume.

det

4 −2 1
5 1 −1
1 −1 1

 = 4 det

1 −1
2

1
4

5 1 −1
1 −1 1


= 4 det

1 −1
2

1
4

0 7
2

−9
4

0 −1
2

3
4


= 4

(
7

2

)
det

1 −1
2

1
4

0 1 − 9
14

0 −1
2

3
4


= 14 det

1 −1
2

1
4

0 1 − 9
14

0 0 3
4
− 9

28


= 14

(
−3

7

)
= −6

So the volume is 6.

6.6 Cross products

This is something that makes sense in three dimensions only. There is no really similar product
of two vectors in higher dimensions. In this respect it is different from things we have seen
before. For example, we might have started with dot products in 2 dimensions, then extended the
notion to 3 dimensions, and later realised that the formula we had for dot products has an obvious
extension to 4 dimensions R4, to R5 and to every Rn. We just need to extend the formula in a
rather easy way. Most of the other formulae we had also extend to Rn with no real bother. Cross
products are different. (By the way, this topic is in §3.4 of Anton & Rorres, as is the material
above about areas and volumes.)
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The easiest way to remember the formula for the cross product v ×w of two vectors

v = v1i + v2j + v3k,

w = w1i + w2j + w3k,

in space is to use a kind of “determinant” formula

v ×w = det

 i j k
v1 v2 v3

w1 w2 w3


Now we have not allowed determinants of matrices where the entries are not scalars, and we

should not allow it. However, in this particular case, we can get away with it if we interpret the
determinant as what we would get by a cofactor expansion along the first row. So, in a more
correct statement, the definition of the cross product is

v ×w = i det

[
v2 v3

w2 w3

]
− j det

[
v1 v3

w1 w3

]
+ k det

[
v1 v2

w1 w2

]
= (v2w3 − v3w2)i− (v1w3 − v3w1)j + (v1w2 − v2w2)k

= (v2w3 − v3w2)i + (v3w1 − v1w3)j + (v1w2 − v2w2)k

There is actually a pattern1 to this last formula and so it is not quite impossible to remember.
But the (slightly suspect) determinant formula is easier to recall, I think.

6.7 Properties of cross products (in R3)

(i) v ×w is a vector in space.

(ii) w × v = −v ×w

Proof. This is not hard. Amounts to a property of determinants. Switching two rows
changes the determinant by a factor −1.

(iii) v ×w is perpendicular to both v and w.

1The first component of v × w depends on the components of v and w other than the first. Starting with
v2w3 − v3w2 we can get to the next component by adding 1 to the subscripts and interpreting 3 + 1 as 1. Or think
in terms of cycling the subscripts around 1 → 2 → 3 → 1 to get the next component. You still have to remember
the first one.
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Proof.

v · (v ×w)

= (v1i + v2j + v3k) ·
(
i det

[
v2 v3

w2 w3

]
− j det

[
v1 v3

w1 w3

]
+ k det

[
v1 v2

w1 w2

])
= v1 det

[
v2 v3

w2 w3

]
− v2 det

[
v1 v3

w1 w3

]
+ v3 det

[
v1 v2

w1 w2

]

= det

v1 v2 v3

v1 v2 v3

w1 w2 w3


= 0

because there are two equal rows in this determinant.

So v ⊥ v ×w.

To show w ⊥ v × w, we can either repeat a similar calculation or we can use v × w =
−w × v ⊥ w.

(iv) ‖v ×w‖ = ‖v‖‖w‖ sin θ‖ where θ = the angle between v and w.

Proof. The proof for this is a calculation using

cos θ =
v ·w
‖v‖‖w‖

=
v1w1 + v2w2 + v3w3

‖v‖‖w‖

sin2 θ = 1− cos2 θ and multiplying out

‖v‖‖w‖2 = (v2w3 − v3w2)
2 + (v3w1 − v1w3)

2 + (v1w2 − v2w2)
2

to show it is the same as

‖v‖2‖w‖2 sin2 θ = ‖v‖2‖w‖2 − ‖v‖2‖w‖2 cos2 θ = ‖v‖2‖w‖2 − (v ·w)2

It is not real hard to do the required algebra, but a bit messy.

(v) Now that we know in a geoemtrical way the length of v ×w, and we also know that it is a
vector perpendicular to both v and w, we can try to describe cross products in a geometrical
way.

If the angle θ between v and w is not 0 and not π, then the vectors v and w are not in the
same direction and also not in exactly opposite directions. So as long as 0 < θ < π, then
we can say that there is one plane through the origin parallel to both v and w (or containing
both vectors if we draw them from the origin). The cross product is then in one of the two
normal directions to that plane.
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If θ = 0 or θ = π, there is no one plane containing v and w, but in these cases sin θ = 0
and so we know v ×w = 0.

In the case 0 < θ < π, we can describe the cross product up to one of the two normal
directions to the plane. The question then is to say which direction it is in. If we can
identify the top (or upwards) side of the plane somehow, is the cross product pointing up or
down? And if the plane is vertical? The anwer to this depends on having the axes fixed in
such a way that the direction of i, j, and k obey a ‘right-hand rule’. This can be described in
terms of the directions of the index finger, first finger and thumb on your right hand if you
hold them perpendicular to one another. Another way is to place a cokscrem (an ordinary
right-handed corkscrew) along the vertical axis and twist the screw from the x-axis towards
the y-axis. It should travel in the direction of the positive z-axis.

For two vectors v and w, the direction of v×w is described by a right-hand rule. Imaging
a corkscrew placed so it is perpendicular to the plane of v and w. Turn the screw from v
towards w and the direction it travels is the same as the direction of v ×w.

(vi) There are some algebraic properties of the cross product that are as you would expect for
products:

u× (v + w) = u× v + u×w

(u + v)×w = u×w + v ×w

(kv)×w = k(v ×w)

= v × (kw)

for any vectors u,v,w ∈ R3 and any scalar k ∈ R. (But recall that the order matters since
v ×w = −w × v.)

These properties are quite easy to check out.

(vii) Vector triple products
u× (v ×w)

make sense, but that is usually not the same as (u× v)×w.

For example

i× (i× j) = i× j

= −j

(i× i)× j = 0× j

= 0

6.7.1 Example. Find the equation of the plane that goes through (1, 2, 3), (3, 1, 2) and (2, 3, 1).
Solution: We did have a way of doing this problem before, using equations that have to be
satisfied by the coefficients a, b, c and d in the equation of the plane ax + by + cz = d (see
§3.12). Here is another approach using cross products.
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Let P = (1, 2, 3), Q = (3, 1, 2) and R = (2, 3, 1) and use the same letters for the position
vectors P, Q and R. Then we can notice that

~PQ = Q−P

= (3i + j + 2k)− (i + 2j + 3k)

= 2i− j + k
~PR = R−P

= (2i + 3j + k)− (i + 2j + 3k)

= i + j− 2k

are two vectors that are in the plane we want (or parallel to it). So their cross product must be
normal to the plane:

~PQ× ~PR = det

i j k
2 −1 1
1 1 −2


= i det

[
−1 1
1 −2

]
− j det

[
2 1
1 −2

]
+ k det

[
2 −1
1 1

]
= 3i + 3j + 3k

So the plane we want has an equation

3x + 3y + 3z = const.

and we can plug in any of the points P , Q or R to see that the constant has to be 18. Thus the
equation of the plane is

3x + 3y + 3z = 18

or rather this is one possible equation. We can multiply or divide this equation by any nonzero
number and still have an equation for the plane. A tidier-looking equations is

x + y + z = 6

(In retrospect maybe we could have guessed the equation, because the 3 points P , Q and
R had the same coordinates permuted around. But the method we used would work for any 3
points, as long as they did not lie in a line.)

6.8 Volume of a parallelopiped
We’ll now give a reason (with the help of cross products) why 3 × 3 determinants can be inter-
preted as volumes of parallepipeds. That is we will justify equation (1) now.

As before we consider the parallelopiped determined by the 3 vectors u = u1i + u2j + u3k,
v = v1i + v2j + v3k and w = w1i + w2j + w3k.
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We take θ for the angle between u and v and look at the face spanned by these vectors as the
‘base’ of the parallelopiped. The volume is given by a similar formula to the one for the area of
a parallelogram

volume (parallelopiped) = area of base × perpendicular height

Geometrically we know

area of base = ‖u‖‖v‖ sin θ

where θ is the angle between u and v. But we can also recognise this as the length of the cross
product and so

area of base = ‖u× v‖

The direction of the cross product u × v is perpendicular to the base, and in our picture it is in
the ‘upwards’ direction, though it could be going the opposite way. Take φ for the angle between
w and the direction of u× v. So the pependicular height is

perpendicular height = ±‖w‖ cos φ

(where the minus sign would be needed if cos φ < 0 and the cross product was in the ‘down-
wards’ direction from the base). We usualy compute angles between vectors using the dot prod-
uct and so we should look at

w · (u× v) = ‖u× v‖‖w‖ cos φ

= area of base × (±( perpendicular height ))

= ± volume (parallelopiped)

We can compute the expression w · (u× v) (which is sometimes called a scalar triple product)
and show it comes out as a determinant. This calculation should remind you of the proof that
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v · (v ×w) = 0.

w · (u× v)

= (w1i + w2j + w3k) ·
(
i det

[
u2 u3

v2 v3

]
− j det

[
u1 v3

v1 v3

]
+ k det

[
u1 u2

v1 v2

])
= w1 det

[
u2 y3

v2 v3

]
− w2 det

[
u1 u3

v1 v3

]
+ w3 det

[
u1 u2

v1 v2

]

= det

w1 w2 w3

u1 u2 u3

v1 v2 v3


= − det

u1 u2 u3

w1 w2 w3

v1 v2 v3


= det

u1 u2 u3

v1 v2 v3

w1 w2 w3


So we have shown now that the determinant if ± the volume (and we also showed that a

scalar triple product is a determinant, though that makes sense only for vectors in 3 dimensions).
In a way it is true that determinants of n×n matrices give some sort of n-dimensional volume.

We’ve proved it in 2 dimensions (parallelogram case) and in 3 dimensions (parallelopiped), but
the idea of an n-dimensional volume is beyond us in this course.

6.9 Using determinants to find equations
In this section we present a kind of application of determinants. Not exactly a scientific ap-
plication, as we will just be looking for equations. To illustrate the method, we’ll start with a
complicated way of finding the equation of a line through 2 points in the plane, then go on to
the equation of a circle through 3 specified points, and finally look at the equation of a plane in
space through 3 given points. In most of these examples we can already do them another way,
and the determinant approach is kind of neat from the point of view of a mathematician. Not so
really practical. Something like this is explained in §11.1 of Anton & Rorres.

Line through 2 points in the plane. If we are given two points P = (p1, p2) and Q = (q1, q2)
in the plane we already know several ways to find the line going through them.

If the points are not on a vertical line (which would have to have equation x = p1 in the
case p1 = q1) then the line has a slope

m =
q2 − q1

p2 − p1

and then it has to have an equatiion like y = mx + c. We can find c now that we know m
by plugging in either P or Q (into y = mx + c). Maybe even slicker is to write down

y − p2 = m(x− p1)
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as the equation, or even

y − p2 =

(
q2 − q1

p2 − p1

)
(x− p1)

So we certainly don’t need determinants to do this, but we are just using it as a warm-up
example. The equation of a line is either x = c if it is vertical or y = mx + c if it has a
slope. To cover both cases at once we can write

ax + by = c

or
ax + by − c = 0

The coefficients a, b and c are the things you need to know to write down the equation. We
don’t want them all to be zero as 0 = 0 is not the equation of a line. We want a, b and c
not all zero.

If we want the line to go through P and Q, we get two equations to be satisfied by a, b and
c:

ap1 + bp2 − c = 0

aq1 + bq2 − c = 0

or

p1a + p2b− c = 0

qa1 + q2b− c = 0

Since we have 2 equations for the 3 unknowns a, b and c (the poinst P and Q are supposed
to be ones we know, and so p1, p2, q1 and q2 are all things we know) there are either going
to be infinitely many solutions or none. We don’t have none since a = b = c = 0 is a
solution. So the equations are consistent. If we were to solve the equations by using (say)
Gauss-Jordan elimination on [

p1 p2 −1 : 0
q1 q2 −1 : 0

]
we would sureley end up with free variables and so infinitely many solutions. Taking a
nonzero value for the free variable, we would get a nonzero solution for a, b and c, so an
equation for our line.

If we were to add in a third point R = (r1, r2) we would get 3 equations rather than just 2

r1a + r2b− c = 0

p1a + p2b− c = 0

qa1 + q2b− c = 0
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and we don’t expect more that one solution a = b = c = 0 when we have 3 equations in 3
unknowns.

If we think more carefully, we see that the only time we have other solutions is when there
is actually a line through R, P and Q, that is only when R is on the line through P and Q.

Using dertminants we can then say what the condtion is for the above 3 equations to have
a solution other than a = b = c = 0. It is the same as requiring the matrixr1 r2 −1

p1 p2 −1
q1 q2 −1


to have no inverse (see Theorem 5.13.2 (b)) and by Theorem 6.4.2 above, that is the same
as

det

r1 r2 −1
p1 p2 −1
q1 q2 −1

 = 0

We are now going to treat R as an unknown or variable point on the line through P and Q.
This determinant gives an equation that has to be satisfied by R = (r1, r2). To emphasise
the different rôle for the point R (varibale) and the points P adn Q (fixed) we’ll switch to
writing R = (x, y). Finally we get that

det

x y −1
p1 p2 −1
q1 q2 −1

 = 0

gives the equation of the line through P = (p1, p2) and Q = (q1, q2).

6.9.1 Example. Find the equation of the line through P = (1, 2) and Q = (4, 9) using
determinants.

Solution: The equation is

det

x y −1
1 2 −1
4 9 −1

 = 0

That works out as

x det

[
2 −1
9 −1

]
− y det

[
1 −1
4 −1

]
+ (−1) det

[
1 2
4 9

]
= 0

or
7x− 3y − 1 = 0

Circle through 3 points in the plane. If we start with 3 points in the plane, there is usually one
circle through the 3 points. There is a possibility we could pick 3 points in a line and then
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there would be no regular circle, rather a line, but we’ll proceed without worrying about
the case of collinear points.

First some words about the equations of circles. The circle centred at (x0, y0) with radisu
r > 0 has equation

(x− x0)
2 + (y − y0)

2 = r2

but if you multiply it out it is

x2 + y2 − 2x0x− 2y0y + (x2
0 + y2

0 − r2) = 0.

Taking account of the fact that we can multiply the equation across by any nonzero number
and still have the same equation, we’ll take the equation to have the form

a(x2 + y2) + bx + cy + d = 0.

A genuine circle has a 6= 0 and there is another condition because the radius squared has
to be positive, but we can think about that a little later. For now, recall that the unknown
coefficients in the equation are the 4 numbers a, b, c, d and they should not all be 0.

Now say we are given 3 points P = (p1, p2), Q = (q1, q2) and R = (r2, r2) on the circle.
This gives us 3 equations that the 4 unknowns a, b, c, d have to satisfy:

a(p2
1 + p2

2) + bp1 + cp2 + d = 0
a(q2

1 + q2
2) + bq1 + cq2 + d = 0

a(r2
1 + r2

2) + br1 + cr2 + d = 0

Since there are only 3 equations we have to get a nonzero solution. One approach would
be to write out the equations as an augmented matrix like p2

1 + p2
2 p1 p2 1 : 0

q2
1 + q2

2 q1 q2 1 : 0
r2
1 + r2

2 r1 r2 1 : 0


and find a nonzero solution after using Gauss-Jordan elimination to find solution in terms
of a free variable.

The method using determinants is to think of a fourth point (x, y) and add in the condtion
that this point should be on the circle. Then we have 4 equations

a(x2 + y2) + bx + cy + d = 0
a(p2

1 + p2
2) + bp1 + cp2 + d = 0

a(q2
1 + q2

2) + bq1 + cq2 + d = 0
a(r2

1 + r2
2) + br1 + cr2 + d = 0

Unless the point (x, y) happens to be on the circle through P , Q and R, there will be no
a, b, c and d satisfying all 4 equations. Usually the matrix of coefficients

x2 + y2 x y 1
p2

1 + p2
2 p1 p2 1

q2
1 + q2

2 q1 q2 1
r2
1 + r2

2 r1 r2 1
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will be invertible and that is the same as there being on the zero solution. Invertible means
nonzero determinant.

But then, the equation

det


x2 + y2 x y 1
p2

1 + p2
2 p1 p2 1

q2
1 + q2

2 q1 q2 1
r2
1 + r2

2 r1 r2 1

 = 0

is exactly the condtion for (x, y) to be one of the points on the circle through P , Q and R.

Expanding out the determinant we see why we have something that looks like the equation
of a circle:

(x2 + y2) det

 p1 p2 1
q1 q2 1
r1 r2 1

− x det

 p2
1 + p2

2 p2 1
q2
1 + q2

2 q2 1
r2
1 + r2

2 r2 1


+y det

 p2
1 + p2

2 p1 1
q2
1 + q2

2 q1 1
r2
1 + r2

2 r1 1

− det

 p2
1 + p2

2 p1 p2

q2
1 + q2

2 q1 q2

r2
1 + r2

2 r1 r2

 = 0

Plane through 3 points in space. The idea is again very similar, maybe marginally more com-
plicated because it is in 3 dimensions.

Say we have 3 points P = (p1, p2, p3), Q = (q1, q2, q3) and R = (r1, r2, r3) and we want to
know the equation of the plane in R3 that contains all 3 points. If the 3 points are collinear,
there will be many such planes containing the line, but we will ignore this situation.

One thing to note is that we already know 2 ways to solve this. The most recent way used
cross products (see Example 6.7.1). Now yet another way!

We write an equation for our plane

ax + by + cz = d

but it will be more convenient for us to have it

ax + by + cz − d = 0.

We should have a, b, c not all zero for a real plane.

Using the 3 points P , Q, R and also another unknown point (x, y, z) on the plane we find
4 equations that a, b, c and d must satisfy

ax + by + cz − d = 0
ap1 + bp2 + cp3 − d = 0
aq1 + bq2 + cq3 − d = 0
ar1 + br2 + cr3 − d = 0
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and then the condtion for there to be a nonzero solution is

det


x y z −1
p1 p2 p3 −1
q1 q2 q3 −1
r1 r2 r3 −1

 = 0

This is the eqaution for the points (x, y, z) on the plane.

6.9.2 Example. Find the equation of the plane that goes through (1, 2, 3), (3, 1, 2) and
(2, 3, 1).

Solution: Let P = (1, 2, 3), Q = (3, 1, 2) and R = (2, 3, 1) and the above determinant
equation to get

det


x y z −1
1 2 3 −1
3 1 2 −1
2 3 1 −1

 = 0

This expands to

x det

2 3 −1
1 2 −1
3 1 −1

− y det

1 3 −1
3 2 −1
2 1 −1

 + z det

1 2 −1
3 1 −1
2 3 −1

− (−1) det

1 2 3
3 1 2
2 3 1

 = 0

After some effort, this works out as

3x + 3y + 3z − 18 = 0,

which we could maybe tidy up as x + y + z = 6. (Same anwser as last time!)

6.10 Application of matrices to graphs
This topic is perhaps out of place here. We might have fitted it in earlier as we will use matrix
multiplication only, nothing about determinants. [This topic is dealt with in §11.7 of Anton &
Rorres.]

Graph theory is a subject that is somehow abstract, but at the same time rather close to appli-
cations. Mathematically a graph is something that has vertices (also known as nodes) and edges
(also called paths) joining some of the nodes to some others. Fairly simple minded examples
would be an intercity rail network (nodes would be stations and the edges would correspond to
the existence of a direct line from one station to another), or an airline route network, or an an-
cestral tree graph, or a telecommunications network. For our situation, we will take an example
something like an airline network (joining different airports by direct flights), but we will take
account of the fact that some airports might not be connected by flights that go direct in both
directions.

Here is a route network for a start-up airline that has two routes it flies. One goes Dublin →
London and London → Dublin, while another route makes a round trip Dublin → Galway →
Shannon → Dublin.
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The arrows on the edges mean that this is an example of a directed graph. Here we allow
one-way edges and bi-drectional edges between nodes (or vertices) of the graph, which we draw
by indicating arrows.

To get the vertex matrix for a graph like this, we first number or order the vertices, for instance

Dub 1
London 2
Galway 3
Shannon 4

and then we make a matrix, a 4× 4 matrix in this case since there are 4 vertices, according to the
following rules. The entries of the matrix are either 0 or 1. All diagonal entries are 0. The (i, j)
entry is 1 if there is a direct edge from vertex i to vertex j (in that direction).

So in our example graph, the vertex matrix is

M =


0 1 1 0
1 0 0 0
0 0 0 1
1 0 0 0


For instance the first row in 0 1 1 0 because there is a direct link 1 → 2 and 1 → 3, but no direct
link 1 → 4 (Dublin to Galway is not directly linked).

There are other ways to use matrices to deal with graphs. For example, you could try to deal
with graphs where there are lengths associated with the edges. The lengths might be the toll
payable along a route, or the distance. And sometimes people put these numbers into a matrix
instead of the zeros and ones we have used (which say there is or there is not a link). Just to say
graph theory is an extensive subject and we won’t be doing much about it here.

Here is one result that makes a connection to matrix muuliplication.

6.10.1 Theorem. If M is the vertex matrix of a directed graph, then the entries of M2 give the
numbers of 2-step (or 2-hop) connections.
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More precisely, the (i, j) entry of M2 gives the number of ways to go from vertex i to vertex
j with exactly 2 steps (or exactly one intermediate vertex).

Similarly M3 gives the number of 3-step connections, and so on for higher powers of M .

In our example

M2 =


0 1 1 0
1 0 0 0
0 0 0 1
1 0 0 0




0 1 1 0
1 0 0 0
0 0 0 1
1 0 0 0

 =


1 0 0 1
0 1 1 0
1 0 0 0
0 1 1 0


The diagonal 1’s in the matrix correspond to the fact that there is a round trip Dublin → London
→ Dublin (or 1 → 2 → 1) and also London → Dublin → London. The 1 in the top right
corresponds to the connection Dublin → Galway → Shannon.

If we add M + M2 we get nonzero entries in every place where there is a conenction in 1 or
2 steps

M + M2 =


1 1 1 1
1 1 1 0
1 0 0 1
1 1 1 0


and the zeros off the diagonal there correspond to the connections that can’t be made in either a
direct connection of a 2-hop connection (which is Gaway → London and London → Shannon in
our example).

Although we don’t see it here the numbers in the matrix M2 can be bigger than 1 if there are
two routes available using 2-hops.

TO BE checked
Richard M. Timoney February 28, 2008
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