
Chapter 5. Matrices
This material is in Chapter 1 of Anton & Rorres.

5.1 Basic matrix notation
We recall that a matrix is a rectangular array or table of numbers. We call the individual numbers
entries of the matrix and refer to them by their row and column numbers. The rows are numbered
1, 2, . . . from the top and the columns are numbered 1, 2, . . . from left to right.

In the example  1 1 2 5
1 11 13 −2
2 1 3 4


13 is the (2, 3) entry, the entry in row 2 and column 3.

Now for some terminology we did not discuss before.
The matrix above is called a 3× 4 matrix because it has 3 rows and 4 columns. We can talk

about matrices of all different sizes such as[
4 5
7 11

]
2× 2

[
4
7

]
2× 1

[
4 7

]
1× 2

 4 5
7 11
13 13


3× 2

and in general we can have m× n matrices for any m ≥ 1 and n ≥ 1.
Matrices with just one row are called row matrices. A 1× n matrix [ x1 x2 · · · xn ] has

just the same information in it as an n-tuple (x1, x2, . . . , xn) ∈ Rn and so we could be tempted
to identify 1× n matrices with n-tuples (which we know are points or vectors in Rn).

We use the term column matrix for a matrix with just one column. Here is an n× 1 (column)
matrix 

x1

x2
...

xn


and again it is tempting to think of these as the “same” as n-tuples (x1, x2, . . . , xn) ∈ Rn. Maybe
not quite as tempting as it is for row matrices, but not such a very different idea.

To avoid confusion that would certainly arise if we were to make either of these identifications
(either of 1×n matrices with n-tuples or of n×1 matrices with n-tuples) we will not make either
of them and keep all the different objects in their own separate places. A bit later on, it will often
be more convenient to think of coluumn n× 1 matrices as points of Rn, but we will not come to
that for some time.

Now, to clarify any confusion these remarks might cause, we explain that we consider two
matrices to be the ‘same’ matrix only if they are absolutely identical. They have to have the



2 2007–08 Mathematics 1S2 (Timoney)

same shape (same number of rows and same number of columns) and they have to have the same
numbers in the same positions. Thus, all the following are different matrices

[
1 2
3 4

]
6=

[
2 1
3 4

]
6=

[
2 1 0
3 4 0

]  2 1
3 4
0 0


5.2 Double subscripts

When we want to discuss a matrix without listing the numbers in it, that is when we want to
discuss a matrix that is not yet specified or an unknown matrix we use a notation like this with
double subscripts [

x11 x12

x21 x22

]
This is a 2× 2 matrix where the (1, 1) entry is x11, the (1, 2) entry is x12 and so on.

It would probably be clearer of we put commas in and write[
x1,1 x1,2

x2,1 x2,2

]
instead, but people commonly use the version without the commas between the two subscripts.

Carrying this idea further, when we want to discuss an m×n matrix x and refer to its entries
we write

x =


x11 x12 · · · x1n

x21 x22 · · · x2n
... . . . ...

xm1 xm2 · · · xmn


So the (i, j) entry is called xij .

Sometimes we want to write something like this but we don’t want to take up space for the
whole picture and we write an abberviated version like

x = [xij]1≤i≤m,1≤j≤n

To repeat what we said about when matrices are equal using this kind of notation, suppose
we have two m× n matrices

x = [xij]1≤i≤m,1≤j≤n and y = [yij]1≤i≤m,1≤j≤n

Then x = y means the mn scalar equations xij = yij must all hold (for each (i, j) with 1 ≤ i ≤
m, 1 ≤ j ≤ n). And if an m × n matrix equals an r × s matrix, we have to have m = r (same
number or rows), n = s (same number of columns) and then all the entries equal.
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5.3 Arithmetic with matrices
In much the same way as we did with n-tuples we now define addition of matrices. We only
allow addition of matrices that are of the same size. Two matrices of different sizes cannot be
added.

If we take two m× n matrices

x = [xij]1≤i≤m,1≤j≤n and y = [yij]1≤i≤m,1≤j≤n

then we define
x + y = [xij + yij]1≤i≤m,1≤j≤n

(the m× n matrix with (1, 1) entry the sum of the (1, 1) entries of x and y, (1, 2) entry the sum
of the (1, 2) entries of x and y, and so on).

For example 2 1
3 −4
0 7

 +

 6 −2
15 12
−9 21

 =

 2 + 6 1 + (−2)
3 + 15 −4 + 12

0 + (−9) 7 + 21

 =

 8 −1
18 8
−9 28


We next define the scalar multiple kx, for a number k and a matrix x. We just multiply every

entry of x by k. So if
x = [xij]1≤i≤m,1≤j≤n

is any m× n matrix and k is any real number then kx is another m× n matrix. Specifically

kx = [kxij]1≤i≤m,1≤j≤n

For example For example

8

 2 1
3 −4
0 7

 =

 8(2) 8(1)
8(3) 8(−4)
8(0) 8(7)

 =

 16 8
24 −32
0 56


We see that if we multiply by k = 0 we get a matrix where all the entries are 0. This has a

special name.
The m× n matrix where every entry is 0 is called the m× n zero matrix. Thus we have zero

matrices of every possible size.
If x is a matrix then we can say

x + 0 = x

if 0 means the zero matrix of the same size as x. If we wanted to make the notation less ambigu-
ous, we could write something like 0m,n for the m× n zero matrix. Then the things we can say
is that if x is any m× n matrix then

x + 0m,n = x, 0x = 0m,n

We will not usually go to the lengths of indicating the size of the zero matrix we mean in this
way. We will write the zero matrix as 0 and try to make it clear what size matrices we are dealing
with from the context.
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5.4 Matrix multiplication
This is a rather new thing, compared to the ideas we have discussed up to now. Certain matrices
can be multiplied and their product is another matrix.

If x is an m × n matrix and y is an n × p matrix then the product xy will make sense and it
will be an m× p matrix.

For example, then [
1 2 3
4 5 6

] 1 0 1 −2
2 −1 3 1
4 2 6 4


is going to make sense. It is the product of

2× 3 by 3× 4

and the result is going to be 2 × 4. (We have to have the same number of columns in the left
matrix as rows in the right matrix. The outer numbers, the ones left after ‘cancelling’ the same
number that occurs in the middle, give the size of the product matrix.)

Here is an example of a product that will not be defined and will not make sense[
1 2 3
4 5 6

] [
7 8
9 10

]
2× 3 by 2× 2

Back to the example that will make sense, what we have explained so far is the shape of the
product [

1 2 3
4 5 6

] 1 0 1 −2
2 −1 3 1
4 2 6 4

 =

[
z11 z12 z13 z14

z21 z22 z23 z24

]
and we still have to explain how to calculate the zij , the entries in the product. We’ll concentrate
on one example to try and show the idea. Say we look at the entry z23, the (2, 3) entry in the
product. What we do is take row 2 of the left matrix ‘times’ column 3 of the right matrix

[
1 2 3
4 5 6

] 1 0 1 −2
2 −1 3 1
4 2 6 4

 =

[
z11 z12 z13 z14

z21 z22 z23 z24

]

The way we multiply the row
[

4 5 6
]

times the column 1
3
6


is a very much reminiscent of a dot product

(4)(1) + (5)(3) + (6)(6) = z23
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In other words z23 = 55

[
1 2 3
4 5 6

] 1 0 1 −2
2 −1 3 1
4 2 6 4

 =

[
z11 z12 z13 z14

z21 z22 55 z24

]

If we calculate all the other entries in the same sort of way (row i on the left times colum j on
the right gives zij we get

[
1 2 3
4 5 6

] 1 0 1 −2
2 −1 3 1
4 2 6 4

 =

[
17 4 25 12
38 7 55 21

]

The only way to get used to the way to multiply matrices is to do some practice. It is possible
to explain in a succinct formula what the rule is for calculating the entries of the product matrix.
In 

x11 x12 · · · x1n

x21 x22 · · · x2n
... . . . ...

xm1 xm2 · · · xmn




y11 y12 · · · y1p

y21 y22 · · · y2p
... . . . ...

yn1 yn2 · · · ynp

 =


z11 z12 · · · z1p

z21 z22 · · · z2p
... . . . ...

zm1 zm2 · · · zmp


the (i, k) entry zik of the product is got by taking the dot product of the ith row [xi1 xi2 . . . xin] of

the first matrix times the kth column


y1k

y2k
...

ynk

 of the second. In short

xi1y1k + xi2y2k + · · ·+ xinynk = zik

If you are familiar with the Sigma notation for sums, you can rewrite this as

n∑
j=1

xijyjk = zik (for 1 ≤ i ≤ m, 1 ≤ k ≤ p).

5.5 Remarks about mathematica

This might be a good time to recall that Mathematica knows how to manipulate matrices. See
section 4.18.

Mathematica treats matrices using the idea of a list. Lists in Mathematica are given by curly
brackets (or braces) and commas to separate the items in the list.

Mathematica uses this to indicate n-tuples of numbers (vectors in Rn). So p = {4, 5, 3}
would be the way to tell Mathematica you want to start talking about a point in R3 with coordi-
nates (4, 5, 3) or the vector 4i + 5j + 3k.
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Mathematica understands matrices as lists of rows. So top get Mathematica to deal with

x =

 3 4
5 −6
7 8


we should instruct it to put x equal to

{ {3, 4}, {5, -6}, {7,8}}

The idea is that Mathematica views the 3× 2 matrix as a list of 3 rows, and each row as a list of
two numbers.

There is a fancier way to input matrices into Mathematica, so that they look like matrices as
you enter them. However, Mathematica will sooner or later show you this list form. If you want to
see a matrix laid out nicely, say the result of a calculation, you have to use the MatrixForm[ ]
command on the matrix.

Adding matrices in Mathematica is easy (just use the the ordinary plus sign) and so is multi-
plication of matrices by scalars. However, matrix multiplication has to be done with a dot.

In[1]:= a = {{1, 2}, {3, 4}}

Out[1]= {{1, 2}, {3, 4}}

In[2]:= b = {{3, 5}, {1, -1}}

Out[2]= {{3, 5}, {1, -1}}

In[3]:= MatrixForm[a]

Out[3]//MatrixForm= 1 2

3 4

In[4]:= a+b

Out[4]= {{4, 7}, {4, 3}}

In[5]:= 2a

Out[5]= {{2, 4}, {6, 8}}

In[6]:= a b

Out[6]= {{3, 10}, {3, -4}}
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In[7]:= MatrixForm[a b]

Out[7]//MatrixForm= 3 10

3 -4

This shows that Mathematica will happily give the wrong answer. Well, not wrong exactly, but
not the right way to multiply matrices. Now we do it right, using the dot.

In[8]:= a.b

Out[8]= {{5, 3}, {13, 11}}

In[9]:= b.a

Out[9]= {{18, 26}, {-2, -2}}

This is an imporatant feature of matrix multiplication: ab and ba are usually different when a and
b are matrices. The order is important!

5.6 Properties of matrix multiplication
Matrix multiplication has properties that you would expect of any multiplication. The standard
rules of algebra work out, or most of them, as long as you keep the order of the products intact.

(i) If a and b are both m× n matrices and c is n× p, then

(a + b)c = ac + bc

and
(ka)c = k(ac) = a(kc)

(ii) If a is an m× n matrices and b and c are both n× p and k is a scalar, then

a(b + c) = ab + ac

(iii) If a is an m× n matrices and b is n× p and c is p× q, then the two ways of calculating abc
work out the same:

(ab)c = a(bc)

(This is known as the associative law for multiplication.)

In the Mathematica transcript above, you see that ab 6= ba in general for matrices. The
situation is as follows.
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(a) ba does not have to make sense if ab makes sense.

For example if a is a 3×4 matrix and b is 4×2, then ab does make sense. ab is (3×4)(4×2)
and so makes sense as a 3 × 2 matrix. But ba whould be a product of a 4 × 2 times a 3 × 4
— so it makes no sense.

(b) It can be that ab and ba both make sense but they are different sizes. For example of a is a
2× 3 matrix and b is a 3× 2 matrix, then ab is 2× 2 while ba is 3× 3. As they are different
sizes ab and ba are certainly not equal.

(c) The more tricky case is the case where the matrices a and b are square matrices of the same
size.

A square matrix is an n×n matrix for some n. Notice that the product of two n×n matrices
is another n× n matrix.

Still, it is usually not the case that ab = ba when a and b are n× n. The example we worked
out with Mathematica was

a =

[
1 2
3 4

]
, b =

[
3 5
1 −1

]
, ab =

[
5 3
13 11

]
, ba =

[
18 26
−2 −2

]
The upshot is that the order matters in matrix multiplication. The last example is not at all
hard to come up with. If you write down two n× n matrices a and b at random, the chances are
ab 6= ba.

There are some special square matrices which deserve a special name. We’ve already seen
the zero matrix (which makes sense for any size — can be m× n and need not be square). One
special matrix is the n× n identity matrix which we denote by In. So

I2 =

[
1 0
0 1

]
, I3 =

 1 0 0
0 1 0
0 0 1

 , I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


and in general In is the n × n matrix with 1 in all the ‘diagonal’ entries and zeroes off the
diagonal.

By the diagonal entries of an n× n matrix we mean the (i, i) entries for i = 1, 2, . . . , n. We
try not to talk of the diagonal for rectangular matrices (because the line from the top left corner
to the bottom right probably won’t contain many entries of the matrix).

The reason for the name is that the identity matrix is a multiplicative identity. That is Ima = a
and a = aIn for any m× n matrix a. These facts are easy to figure out.

5.7 Systems of linear equations revisited
There is a way to write a system of linear equations as a single matrix equation. For example,
the system

5x1 − 2x2 + x3 − 4x4 = −3
2x1 + 3x2 + 7x3 + 2x4 = 18
x1 + 2x2 − x3 − x4 = −3
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of 3 equations in 4 unknowns can be written 5x1 − 2x2 + x3 − 4x4

2x1 + 3x2 + 7x3 + 2x4

x1 + 2x2 − x3 − x4

 =

 −3
18
−3


and the left side can be written as a matrix product. We get

 5 −2 1 −4
2 +3 +7 +2
1 +2 −1 −1




x1

x2

x3

x4

 =

 −3
18
−3


This has the form

Ax = b (1)

where

A =

 5 −2 1 −4
2 3 7 2
1 2 −1 −1


is the matrix of the coefficients for the unknowns x1, x2, x3, x4 (a 3× 4 matrix),

x =


x1

x2

x3

x4


is the 4× 1 (column) matrix made up of the unknowns, and

b =

 −3
18
−3


is the (3 × 1 column) matrix of the constant terms (right hand sides) in the system of linear
equations.

Note that this is rather different from the augmented-matrix shorthand we used in Chapter 1.
That could be summarised as taking the matrix

[A |b],

which is a 3× (4 + 1) = 3× 5 matrix

A =

 5 −2 1 −4 : −3
2 3 7 2 : 18
1 2 −1 −1 : −3


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Recall that the positions of the entries in the augmented matrix corresponds to the rôle of the
number as a coefficent in the system of equations, while the dotted line is there to remind us of
the position of the equals sign.

Looking at the equation (1), you should be remined of the simplest possible linear equations
in a single unknowm, like 5x = 21, which we solve by dividing across by the thing multiplying
x. (In the example 5x = 21 we divide across by 5, or mulriuply both sides of the equation by 1

5

to get the solution x = 21
5

.)
Thinking in these terms, it seems tempting to solve the equation (1) by ‘dividing’ both sides

by A. One problem is to make sense of division by a matrix. That would be the same as making
sense of the reciprocal of the matrix, or one over the matrix.

In the actual example we picked, with fewer equations than unknowns, this idea is never
going to work. We know from before that when we simplify 3 equations in 4 unknowns via
Gauss-Jordan elimination, one of two things can happen. Either we have inconsistent equations
(with no solutions at all) or we will end up with at least 1 free variable.

However, if we did have the same number of equations as unknowns, we are quite often going
to end up with just one solution for the unknowns. That is the case where we can possibly have
a reciprocal for the matrix A that comes up, except we will call it the inverse rather than the
reciprocal.

To summarise the point here, it is that a system of m linear equations in n unknowns
a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
...

...
am1x1 + am2x2 + · · · + amnxn = bm

can be written as a single matrix equation
a11 a12 · · · a1n

a21 a22 · · · a2n
... . . .

am1 am2 · · · amn




x1

x2
...

xn

 =


b1

b2
...

bm


So it is of the form (1) where now A is an m × n matrix, x is an n × 1 (column) matrix of
unknowns and b is an m× 1 column.

5.8 Inverse matrces — basic ideas
Definition: If A is an n× n matrix, then another n× n matrix C is called the inverse matrix for
A if it satisfies

AC = In and CA = In.

We write A−1 for the inverse matrix C (if there is one).
The idea for this definition is that the identity matrix is analagous to the number 1, in the

sense that 1k = k1 = k for every real number k while AIn = InA = A for every n × n matrix
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A. (That’s why it is called the identity matrix.) Then the key thing about the reciprocal of a
nonzero number k is that the product (

1

k

)
k = 1

For numbers the order of the product is not important, but for matrices the order matters. That is
why we insist that the inverse should work on both sides.

A bit later on though, we will see a theorem that says that if A and C are n× n matrices and
AC = In, then automatically CA = In must also hold. Because AC is usually not the same
as CA, it should not be expected that AC = CA when AC = In. But it is true (for square
matrices).

However, one thing that is not as obvious as for numbers, is when there is an inverse for a
given matrix A. It is not enough that A should be nonzero. One way to see this is to look at a
system of n linear equations in n unknowns written in the matrix form (1). If the n×n matrix A
has an inverse matrix C then we can multiply both sides of the equation (1) by C from the left to
get

Ax = b

C(Ax) = Cb

(CA)x = Cb

Inx = Cb

x = Cb

So we find that the system of n equation in n unknowns given by (1) will just have the one
solution x = Cb. And that will be true for any right hand side b.

This reveals a special property for an n×n matrix A. It means that there are really n equations
in (1), none are dependent on the others, none inconsistent with the others. This amounts to a
significant restriction on A.

Definition. An n× n matrix A is called invertible if there is an n× n inverse matrix for A.

5.9 Finding inverse matrices
We now consider how to find the inverse of a given matrix A. The method we explain will work
quite efficiently for large matrices as well as for small ones.

We’ll leave aside the question of whether there is an inverse for the square matrix A that we
start with. We will also just look for C by looking at the equation AC = In, and worry later
about the claim we made before that CA = In will work out automatically once AC = In.

To make things more concrete, we’ll thing about a specific exaample

A =

[
2 3
2 5

]
We think of how we can find

C =

[
c11 c12

c21 c22

]
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so that AC = I2. Writing out that equation we want C to satify we get

AC =

[
2 3
2 5

] [
c11 c12

c21 c22

]
=

[
1 0
0 1

]
= I2

If you think of how matrix multiplication works, this amounts to two different equations for the
columns of C [

2 3
2 5

] [
c11

c21

]
=

[
1
0

]
and

[
2 3
2 5

] [
c12

c22

]
=

[
0
1

]
According to the reasoning we used above to get to equation (1), each of these represents a system
of 2 linear equations in 2 unknowns that we can solve for the unknowns, and the unknonws in
this case are the columns of C.

We know then how to solve them. We can use Gauss-Jordan elimination (or Gaussian elimi-
nation) twice, once for the augmented matrix for the first system of equations,[

2 3 : 1
2 5 : 0

]
and again for the second system [

2 3 : 0
2 5 : 1

]
If we were to write out the steps for the Gauss-Jordan eliminations, we’d find that we were
repeating the exact same steps the second time as the first time. The same steps, but the column
to the right of the dotted line will be different in each case. There is a trick to solve at once two
systems of linear equations, where the coefficients of the unknowns are the same in both, but the
right hand sides are different. (That is the situation we have.) The trick is to write both columns
after the dotted line, like this [

2 3 : 1 0
2 5 : 0 1

]
We row reduce this matrix[

1 3
2

: 1
2

0 OldRow1× 1
2

2 5 : 0 1[
1 3

2
: 1

2
0

0 2 : −1 1 OldRow2− 2× OldRow1[
1 3

2
: 1

2
0

0 1 : −1
2

1
2

OldRow2× 1
2

(row echolon form now)[
1 0 : 5

4
−3

4
OldRow1− 3

2
× OldRow2

0 1 : −1
2

1
2

This is in reduced row echelon form. (Gauss-Jordan finished.)
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The first column after the dotted line gives the solution to the first system, the one for the first
column of C. The second column after the dotted line relates to the second system, the one for
the second column of C. That means we have[

c11

c21

]
=

[
5
4

−1
2

]
and

[
c12

c22

]
=

[
−3

4
1
2

]
So we find that the matrix C has to be

C =

[
5
4

−3
4

−1
2

1
2

]
We can multiply out and check that it is indeed true that AC = I2 (which has to be the case
unless we made a mistake) and that CA = I2 (which has to be true automatically according to a
theorem that we have mentioned is coming later).

AC =

[
2 3
2 5

] [
5
4

−3
4

−1
2

1
2

]
=

[
2
(

5
4

)
+ 3

(
−1

2

)
2
(
−3

4

)
+ 3

(
1
2

)
2
(

5
4

)
+ 5

(
−1

2

)
2
(
−3

4

)
+ 5

(
1
2

)] =

[
1 0
0 1

]

CA =

[
5
4

−3
4

−1
2

1
2

] [
2 3
2 5

]
=

[(
5
4

)
(2) +

(
−3

4

)
(2)

(
5
4

)
(3) +

(
−3

4

)
(5)(

−1
2

)
(2) +

(
1
2

)
(2)

(
−1

2

)
(3) +

(
1
2

)
(5)

]
=

[
1 0
0 1

]
As mentioned before, this approach works for larger matrices too. If we start with an n × n

matrix

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
... . . . ...

an1 an2 · · · ann


and we look for an n× n matrix

C =


c11 c12 · · · c1n

c21 c22 · · · c2n
... . . . ...

cn1 cn2 · · · cnn


where AC = In, we want

AC =


a11 a12 · · · a1n

a21 a22 · · · a2n
... . . . ...

an1 an2 · · · ann




c11 c12 · · · c1n

c21 c22 · · · c2n
... . . . ...

cn1 cn2 · · · cnn

 =


1 0 · · · 0
0 1 · · · 0
... . . . ...
0 0 · · · 1

 = In

This means that the columns of C have to satisfy systems of n linear equations in n unknowns
of the form

A(jth column of C) = jth column of In
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We can solve all of these n systems of equations together becuase they have the same matrix A
of coefficients for the unknowns. We do this by writing an augmented matrix where there are n
columns after the dotted line. The columns to the right of the dotted line, the right hand sides of
the various systems we want to solve to find the columns of C are going to be the columns of the
n× n identity matrix. Summarising, this is what we have.

Method: (Method for finding the inverse A−1 of an n × n matrix A.) Use Gauss-
Jordan elimination to row reduce the augmented matrix

[A | In] =


a11 a12 · · · a1n : 1 0 · · · 0
a21 a22 · · · a2n : 0 1 · · · 0

... . . . ... :
... . . . ...

an1 an2 · · · ann : 0 0 · · · 1


We should end up with a reduced row echelon form that looks like

1 0 · · · 0 : c11 c12 · · · c1n

0 1 · · · 0 : c21 c22 · · · c2n
... . . . ... :

... . . . ...
0 0 · · · 1 : cn1 cn2 · · · cnn


or in summary [In |A−1].

We’ll now look into when this works more carefully. If we don’t end up with a matrix of the
form [In |C] it means that there is no inverse for A.

5.10 Elementary matrices
We now make a link between elementary row operations and matrix multiplication. Recall now
the 3 types of elementary row operations as laid out in section 1.6.

(i) multiply all the numbers is some row by a nonzero factor (and leave every other row un-
changed)

(ii) replace any chosen row by the difference between it and a multiple of some other row.

(iii) Exchange the positions of some pair of rows in the matrix.

Definition: An n× n elementary matrix E is the result of applying a single elementary row
operation to the n× n identity matrix In.

Examples. We use n = 3 in these examples. Recall

I3 =

1 0 0
0 1 0
0 0 1


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(i) Row operation: Multiply row 2 by −5. Corresponding elementary matrix

E =

1 0 0
0 −5 0
0 0 1


(ii) Row operation: Add 4 times row 1 to row 3 (same as subtracting (−4) times row 1 from

row 3). Corresponding elementary matrix

E =

1 0 0
0 1 0
4 0 1


(iii) Row operation: swop rows 2 and 3.

E =

1 0 0
0 0 1
0 1 0


5.11 Link of matrix multiplication to row oerations
The idea here is that if A is an m × n matrix, then doing one single row operation on A is
equivalent to multiplying A on the left by an elementary matrix E (to get EA), and E should be
the m×m elementary matrix for that same row operation.

Examples. We use the following A to illustrate this idea,

A =

1 2 3 4
5 6 7 8
9 10 11 12


(i) Row operation: Add (−5) times row 1 to row 2. Corresponding EA is

EA =

 1 0 0
−5 1 0
0 0 1

1 2 3 4
5 6 7 8
9 10 11 12

 =

1 2 3 4
0 −4 −8 −12
9 10 11 12


(Same as doing the row operation to A.)

(ii) Row operation: Suppose in addition we also want to add (−9) times row 1 to row 3. We’ve
been doing two steps together, but really they should be done one at a time. (Doing two
together is ok as long as it is clear that you could still do the second one after you’ve
done the first.) In the context of multiplying by elementary matrices, we need a different
elementary matrix for the second step

E2 =

 1 0 0
0 1 0
−9 0 1


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What we want in order to do first one and then the next row operation is

E2EA =

 1 0 0
0 1 0
−9 0 1

EA =

 1 0 0
0 1 0
−9 0 1

1 2 3 4
0 −4 −8 −12
9 10 11 12

 =

1 2 3 4
0 −4 −8 −12
0 −8 −16 −24


where E is the elementary matrix we used first.

There is a justification for going back and renaming the first one E1 rather than E. So the
first row operation changes A to E1A, and then the second changes that to E2E1A.

If we do a whole sequence of several row operations (as we would do if we followed the
Gaussian elimination recipe further) we can say that the end result after k row operations
is that we get

EkEk−1 . . . E3E2E1A

where Ei is the elementary matrix for the ith row operation we did.

5.12 Elementary matrices are invertible

As we explained at the end of section 1.5, all elementary row operations are reversible by
another elementary row operation. It follows that every elementray matrix E has an inverse
that is another elementary matrix.

For example, take E to be the 3× 3 elementary matrix corresonding the the row operation
“add (−5) times row 1 to row 2”. So

E =

 1 0 0
−5 1 0
0 0 1


Then the reverse row operation is ”add 5 times row 1 to row 2”, and the elementary matrix
for that is

Ẽ =

1 0 0
5 1 0
0 0 1


Thinking in terms of row operations, or just my multiplying out the matrices we see that

ẼE = result of applying second row operation to E =

1 0 0
0 1 0
0 0 1

 = I3

and EẼ = I3 also.
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5.13 Theory about invertible matrices
5.13.1 Theorem. Products of invertible matrices are invertible, and the inverse of the product is
the product of the inverses taken in the reverse order.

In more mathematical language, if A and B are two invertible n × n matrices, then AB is
invertible and (AB)−1 = B−1A−1.

Proof. Start with any two invertible n× n matrices A and B, and look at

(AB)(B−1A−1) = A(BB−1)A−1 = AInA
−1 = AA−1 = In

And look also at

(B−1A−1)(AB) = B−1(B−1B)A = B−1InB = B−1B = In

This shows that B−1A−1 is the inverse of AB (because multiplying AB by B−1A−1 on the left
or the right gives In). So it shows that (AB)−1 exists, or in other words that AB is invertible, as
well as showing the formula for (AB)−1.

5.13.2 Theorem (ways to see that a matrix is invertible). Let A be an n× n (square) matrix.
The following are euivalent statemnts about A, meaning that is any one of them is true, then

the other have to be true as well. (And if one is not true, the others must all be not true.)

(a) A is invertible (has an inverse)

(b) the equation Ax = 0 (where x is an umknown n × 1 column matrix, 0 is the n × 1 zero
column) has only the solution x = 0

(c) the reduced row echelon for for A is In

(d) A can be written as a product of elementary matrices

Proof. We’ll actually relegate the proof to an appendix, even though we are now in a position
to explain the reasons the theorem works. The details seemed a bit lengthy and abstract to
go through them in the lectures, even though they just involve putting together things we have
already done, and the book by Anton & Rorres goes through this proof.

One thing that we will explain here is the overall way of approaching the proof.
The whole idea of what a proof is in Mathematics should be borne in mind. Theorems are the

mathematical version of the laws of science (the second law of thermodynamics, Boyle’s law,
Newtons Laws and so on), but there is a difference. In Science, somebody formulates a possible
rule or law as a way of summarising observations made in experiments. The law should then
be checked with further experiments and if it checks out, it becomes accepted as a fact. Such
laws generally have to have a precise statement for them to work. Roughly they say that given a
certain situation, some particular effect or result will happen. Sometimes the “certain situation”
may be somewhat idealised. For example, some things may hold in a vaccuum, or in the absence
of gravity, and these circumstances are hard to come by in a perfect sense. So one may interpret
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the law as saying that the effect or result should be very close to the obererved effect or result if
the situation is almost exactly valid. So it is true to say that light travels in a straight line (in a
vacuum and in the absence of gravity), and it is almost true even if there is gravity. But over long
distances across space, light can be observed to have been bent.

In mathematics we expect our theorems to be exactly true as stated. So there will be assump-
tions about the situation (certain kind of matrix, certain kind of function, maybe a combination of
several assumptions). But then the idea is that the conclusion of the theorem should always hold
when the assumptions are valid. We don’t check a theorem by experience, or by experiments.
We might realise it is possibly true on such a basis, but the idea then is to show by some steps
of logical reasoning that the conclusion must always hold in the situation where the assumptions
are valid.

In principle there are a lot of things to prove in the theorem we are dicussing. Staring with
any one of the 4 items, assuming that that statement is valid for a given n × n matrix A, we
should provide a line of logical reasoning why all the other items have to be also true about that
same A. We don’t do this by picking examples of matrices A, but by arguing about a matrix
where we don’t specifically know any of the entries. But we then have 4 times 3 little proofs to
give, 12 proofs in all. So it would be long even if each individual proof is very easy.

There is a trick to reduce the number of proofs from 12 to only 4. We prove a cyclical number
of steps

(a) ⇒ (b)
⇑ ⇓

(d) ⇐ (c)

The idea then is to prove 4 things only

(a) ⇒ (b) In this step we assume only that statement (a) is true about A, and then we show that
(b) must also be true.

(b) ⇒ (c) In this step we assume only that statement (b) is true about A, and then we show that
(c) must also be true.

(c) ⇒ (d) Similarly we assume (c) and show (d) must follow.

(d) ⇒ (a) In the last step we assume (d) (not any of the others, only (d)) and show that (a) must
follow.

When we have done this we will be able to deduce all the statements from any one of the 4.
Starting with (say) the knowledge that (c) is a true statement the third step above shows that (d)
must be true. Then the next step tells us (a) must be true and the first step then says (b) must be
true. In other words, starting at any point around the ring (or at any corner of the square) we can
work around to all the others.

We’ll leave the 4 proofs out though, but give them in an appendix in case you are intereset.

5.13.3 Theorem. If A and B are two n× n matrices and if AB = In, then BA = In.
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Proof. The idea is to apply Theorem 5.13.2 to the matrix B rather than to A.
Consider the equation Bx = 0 (where x and 0 are n × 1). Multiply that eqquation by A on

the left to get

ABx = B0

Inx = 0

x = 0

So x = 0 is the only possible solution of Bx = 0.
That means B must satisfy condition (b) of Theorem 5.13.2. Thus by the theorem, B−1

exists. Multiply the equation AB = In by B−1 on the right to get

ABB−1 = InB
−1

AIn = B−1

A = B−1

So, we get
BA = BB−1 = In.

5.14 Special matrices
There are matrices that have a special form that makes calculations with them much easier than
the same calculations are as a rule.

Diagonal matrices For square matrices (that is n× n for some n) A = (aij)
n
i,j=1 we say that A

is a diagnonal matrix if aij = 0 whenever i 6= j. Thus in the first few cases n = 2, 3, 4
diagonal matrices look like [

a11 0
0 a22

]
a11 0 0

0 a22 0
0 0 a33




a11 0 0 0
0 a22 0 0
0 0 a33 0
0 0 0 a44


Examples with numbers 4 0 0

0 −2 0
0 0 13

 ,

−1 0 0
0 0 0
0 0 4

 .

(These are 3× 3 examples.)
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Diagonal matrices are easy to multiply4 0 0
0 5 0
0 0 6

−1 0 0
0 12 0
0 0 4

 =

−4 0 0
0 60 0
0 0 24


a11 0 0

0 a22 0
0 0 a33

b11 0 0
0 b22 0
0 0 b33

 =

a11b11 0 0
0 a22b22 0
0 0 a33b33


The idea is that all that needs to be done is to multiply the corresponding diagonal entries
to get the diagonal entries of the product (which is again diagonal).

Based on this we can rather easily figure out how to get the inverse of a diagonal matrix.
For example if

A =

4 0 0
0 5 0
0 0 6


then

A−1 =

1
4

0 0
0 1

5
0

0 0 1
6


because if we multiply these two diagonal matrices we get the identity.

We could also figure out A−1 the usual way, by row-reducing [A | I3]. The calculation is
actually quite easy. Starting with

[A | I3] =

 4 0 01 : 0 0
0 5 00 : 1 0
0 0 6 : 0 0 1


we just need to divide each row by something to get to

[A | I3] =

 1 0 0 : 1
4

0 0
0 1 0 : 0 1

5
0

0 0 1 : 0 0 1
6


In summary, for 3× 3 diagonal matrices,a11 0 0

0 a22 0
0 0 a33

−1

=

 1
a11

0 0

0 1
a22

0

0 0 1
a33


and the digonal matrices that are invertible are those for which this formula makes sense
— in other words, those where the diagonal entries are all non-zero, or

a11a22a33 6= 0
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A similar result holds for 2× 2 diagonal matrices and for diagonal matrices of larger sizes.
The number which must be non-zero for a diagonal matrix to be invertible, the product of
the diagonal entries for a diagonal matrix, is an example of a “determinant”. We will come
to determinants (for all square matrices) in the next chapter.

Upper triangular matrices This is the name given to square matrices where all the non-zero
entries are on or above the diagonal.

A 4× 4 example is

A =


4 −3 5 6
0 3 7 −9
0 0 0 6
0 0 0 −11


Another way to express it is that all the entries that are definitely below the diagonal have
to be 0. Some of those on above the diagonal can be zero also. They can all be zero and
then we would have the zero matrix, which would be technically upper triangular. All
diagonal matrices are also counted as upper triangular.

The precise statement then is that an n× n matrix

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
... . . . ...

an1 an2 · · · ann


is upper triangular when

aij = 0 whenever i > j.

It is fairly easy to see that if A and B are two n× n upper triangular matrices, then

the sum A + B and the product AB

are both upper triangular.

Also inverting upper traingular matrices is relatively painless because the Gaussian elim-
ination parts of the process are almost automatic. As an example, we look at the (upper
triangular)

A =


3 4 5 6
0 7 8 9
0 0 1 2
0 0 0 3


We should row reduce 

3 4 5 6 : 1 0 0 0
0 7 8 9 : 0 1 0 0
0 0 1 2 : 0 0 1 0
0 0 0 3 : 0 0 0 1


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and the first few steps are to divide row 1 by 3, row 2 by 7 and row 4 by 3, to get
1 4

3
5
3

2 : 1
3

0 0 0
0 1 8

7
9
7

: 0 1
7

0 0
0 0 1 2 : 0 0 1 0
0 0 0 1 : 0 0 0 1

3


This is then already in row echelon form and to get the inverse we need to get to reduced
row echelon form (starting by clearing out above the last leading 1, then working back up).
The end result should be

1 0 0 0 : 1
3
− 4

21
−1

7
0

0 1 0 0 : 0 1
7

−8
7

1
3

0 0 1 0 : 0 0 1 −2
3

0 0 0 1 : 0 0 0 1
3


It is quite easy to see that an upper traigular matrix is invertible exactly when the diagonal
entries are all nonzero. Another way to express this same thing is that the product of the
diagonal entries should be nonzero.

It is also easy enough to see from the way the above calculation of the inverse worked out
that the inverse of an upper triangular matrix will be again upper triangular.

Strictly upper triangular matrices These are matrices which are upper triangular and also
have all zeros on the diagonal. This can also be expressed by saying that there should
be zeros on and below the diagonal.

The precise statement then is that an n× n matrix

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
... . . . ...

an1 an2 · · · ann


is strictly upper triangular when

aij = 0 whenever i ≥ j.

An example is

A =

0 1 2
0 0 3
0 0 0


This matrix is certainly not invertible. To be invertible we need each diagonal entry to be
nonzero. This matrix is at the other extreme in a way — all diagonal entries are 0.



Matrices 23

For this matrix

A2 = AA =

0 1 2
0 0 3
0 0 0

0 1 2
0 0 3
0 0 0

 =

0 0 3
0 0 0
0 0 0


and

A3 = AA2 =

0 1 2
0 0 3
0 0 0

0 0 3
0 0 0
0 0 0

 =

0 0 0
0 0 0
0 0 0

 = 0

In fact this is not specific to the example. Every strictly upper triangular matrix

A =

0 a12 a13

0 0 a23

0 0 0


has

A2 =

0 0 a12a23

0 0 0
0 0 0

 and A3 = 0.

In general an n× n strictly upper triangular matrix A has An = 0.

5.14.1 Definition. A square matrix A is called nilpotent if some power of A is the zero
matrix.

We have just seen that n× n strictly upper triangular matrices are nilpotent.

This shows a significant difference between ordinary multiplication of numbers and matrix
multiplication. It is not true that AB = 0 means that A or B has to be 0. The question
of which matrices have an inverse is also more complicated than it is for numbers. Every
nonzero number has a reciprocal, but there are many nonzero matrices that fail to have an
inverse.

5.15 Transposes
Now that we’ve discussed upper triangular matrices (and strictly upper triangular), it might cross
your mind that we coudl also discuss lower triangular matrices. In fact we could repeat most of
the same argumenst for them, with small modifications, but the transpose provides a way to flip
from one to the other.

In summary the transpose of a matrix is what you get by writing toe rows as columns. More
precisely, we can take the transpose of any m× n matrix A. If

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
... . . .

am1 am2 · · · amn


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we write the entries of the first row a11, a12, . . . , a1n down the first column of the transpose, the
entries a21, a22, . . . , a2n of the second row down the second column, etc. We get a new matrix,
which we denote At and is an n×m matrix

At =


a11 a21 · · · am1

a12 a22 · · · am2
... . . .

a1n a2n · · · anm


Another way to describe it is that the (i, j) entry of the tranpsose in aji = the (j, i) entry of

the original matrix.
Examples are

A =

[
a11 a12 a13

a21 a22 a23

]
, At =

a11 a21

a12 a22

a13 a32



A =

 4 5 6
7 8 9
10 11 12

 , At =

4 7 10
5 8 11
6 9 12


Another way to describe it is that it is the matrix got by reflecting the original matrix in the

“diagonal” line, or the line were i = j (row number = column number).
So we see that if we start with an upper traingular

A =

a11 a12 a13

0 a22 a23

0 0 a33


then the transpose

A =

a11 0 0
a12 a22 0
a13 a23 a33


is lower triangular (has all nonzero entries on or below the diagonal).

5.15.1 Facts about transposes

(i) Att = A (transpose twice gives back the original matrix)

(ii) (A + B)t = At + Bt (if A and B are matrices of the same size).

This is pretty easy to see.

(iii) (kA)t = kAt for A a matrix and k a scalar. (Again it is quite easy to see that this always
works out.)
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(iv) (AB)t = BtAt (the transpose of a product is the product of the transposes taken in the
reverse order — provided the product AB makes sense).

So if A is m×n and B is n×p, then (AB)t = BtAt. Note that Bt is p×n and At is n×m
so that BtAt makes sense and is a p×m matrix, the same size as (AB)t.

The proof for this is a little more of a challenge to write out than the previous things. It
requires a bit of notation and organisation to get it straight. So we won’t do it in detail.
Here is what we would need to do just for the 2× 2 case.

Take any two 2× 2 matrices, which we write out as

A =

[
a11 a12

a21 a22

]
, B =

[
b11 b12

b21 b22

]
Then

At =

[
a11 a21

a12 a22

]
, Bt =

[
b11 b21

b12 b22

]
and we can find

AB =

[
a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

]
, (AB)t =

[
a11b11 + a12b21 a21b11 + a22b21

a11b12 + a12b22 a21b12 + a22b22

]
while

BtAt =

[
b11a11 + b21a12 b11a21 + b21a22

b12a11 + b22a12 b12a21 + b22a22

]
= (AB)t

(v) If A is an invertible square matrix then At is also invertible and (At)−1 = (A−1)t (the
inverse of the tranpose is the same as the tranpose of the inverse.

Proof. Let A be an invertibe n× n matrix. We know from the definition of A−1 that

AA−1 = In and A−1A = In

Take transposes of both equations to get

(A−1)tAt = I t
n = In and At(A−1)t = I t

n = In

Therefore we have proved that At has an inverse and that the inverse matrix is (A−1)t. So
we have proved the formula (At)−1 = (A−1)t.

5.16 Lower triangular matrices
We can use the transpose to transfer what we know about upper triagnular matrices to lower
triangular ones. Let us take 3×3 matrices as an example, though what we say will work similarly
for n× n.
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If

A =

a11 0 0
a21 a22 0
a31 a32 a33


is lower traingular, then its transpose

At =

a11 a21 a31

0 a22 a32

0 0 a33


is upper triangular. So we know that At has an inverse exactly when the product of its diagonal
entries

a11a22a33 6= 0

But that is the same as the product of the diagonal entries of A.
So lower traingular matrices have an inverse exactly when the product of the diagonal entries

is nonzero.
Another thing we know is that (At)−1 is again upper triangular. So ((At)−1)t = (A−1)tt =

A−1 is lower triangular. In this way we can show that the inverse of a lower traingualr matrix is
again lower traingular (if it exists).

Using (AB)t = BtAt we could also show that the product of lower triangular matrices [of
the same size] is again lower triangular. (The idea is that BtAt = a product of upper triangulars
is upper triangular and then AB = ((AB)t)t = (BtAt)t = transpose of upper triangular and so
AB is lower triangular.) You can also figure this out by seeing what happens when you multiply
two lower traingular matrices together.

Finally, we could use transpsoes to show that stricly lower triangular matrices have to be
nilpotent (some power of them is the zero matrix). Or we could figure that out by working it out
in more or less the same way as we did for the strictly upper triangular case.

5.17 Trace of a matrix
In the next chapter we will see how to work out a determinant for any square matrix A, a number
that ‘determines’ whether or not A is invertible. For diagonal and triangular matrices (upper or
lower traingular) we already have such a number, thr product of the diagonal entries. It will be
more complicated to work out though when we look at more complicated matrices.

The trace of a matrix is a number that is quite easy to compute. It is the sum of the diagonal
entries. So

A =

[
1 2
3 4

]
has

trace(A) = 1 + 4 = 5

and

A =

 1 2 3
4 5 6
−7 −8 −6


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has
trace(A) = 1 + 5 + (−6) = 0

For 2× 2

A =

[
a11 a12

a21 a22

]
⇒ trace(A) = a11 + a22

and for 3× 3,

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 ⇒ trace(A) = a11 + a22 + a33

Although the traceof a matrix is easy to calcualte, it is not that wonderfully useful. The
properties it has are as follows.

5.17.1 Properties of the trace

(i) trace(A + B) = trace(A) + trace(B) (if A and B are both n× n)

(ii) trace(kA) = k trace(A) (if k is a scalara and A is a square matrix)

(iii) trace(At) = trace(A) (if A is any square matrix)

(iv) trace(AB) = trace(BA) for A and B square matrices of the same size (or even for A
m× n and B an n×m matrix).

The last property is the only one that is at all hard to check out. The others are pretty easy to
see.

To prove the last one, we should write out the enties of A and B, work out the diagonal
entries of AB and the sum of them. Then work out the sum of the diagonal entries of BA and
their sum. Rearraning we should see we get the same answer.

In the 2× 2 we would take

A =

[
a11 a12

a21 a22

]
, B =

[
b11 b12

b21 b22

]
(without saying what the entries are soecifically) and look at

AB =

[
a11b11 + a12b21 ∗

∗ a21b12 + a22b22

]
, trace(AB) = a11b11 + a12b21 + a21b12 + a22b22

(where the asterisks means that we don’t have to figure out what goes in those places).

BA =

[
b11a11 + b12a21 ∗

∗ b21a12 + b22a22

]
, trace(BA) = b11a11 + b12a21 + b21a12 + b22a22

If you look at what we got you should be abel to see that trace(AB) = trace(BA). The idea is
that now we know this is always going to be true for 2×2 matrices A and B, because we worked
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out that the two traces are equal without having to know the values of the entries. So it has to
work no matter what the numbers are that go in A and B.

All we have done is chack trace(AB) = trace(BA) in the 2× 2 case. To check it for all the
sizes is not really that much more difficult but it requires a bit of nottaion to be able to keep track
of what is going on.

A Appendix

Proof. (of Theorem 5.13.2).

(a) ⇒ (b) Assume A is invertible and A−1 is its inverse.

Consider the equation Ax = 0 where x is some n×1 matrix and 0 is the n×1 zero matrix.
Multiply both sides by A−1 on the left to get

A−1Ax = A−10

Inx = 0

x = 0

Therefore x = 0 is the only possible solution of Ax = 0.

(b) ⇒ (c) Assume now that x = 0 is the only possible solution of Ax = 0.

That means that when we solve Ax = 0 by using Gauss-Jordan elimination on the aug-
mented matrix A |

0
0
...
0

 = [A | 0]

we can’t end with free variables.

It is easy to see then that we must end up with a reduced row echelon form that has as many
leading ones as there are unknowns. Since we are dealing with n equations in n unknowns,
that means A row reduces to In.

(c) ⇒ (d) Suppose now that A row reduces to In.

Wriet down an elementary matrix for each row operation we need to row-reduce A to In.
Say they are E1, E2, . . . , Ek. Then we know E1A is the same as the matrix we would have
after the first row operation, E2E1A is what we got after the second one, etc. Recall from
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5.12 that all elementary matrices have inverses. So we must have

EkEk−1 . . . E2E1A = In

E−1
k EkEk−1 . . . E2E1A = E−1

k In

InEk−1 . . . E2E1A = E−1
k

Ek−1 . . . E2E1A = E−1
k

E−1
k−1Ek−1 . . . E2E1A = E−1

k−1E
−1
k

Ek−2 . . . E2E1A = E−1
k−1E

−1
k

So, when we keep going in this way, we end up with

A = E−1
1 E−1

2 . . . E−1
k−1E

−1
k

So we have (d) because inverses of elementary matrices are again elementary matrices.

(d) ⇒ (a) If A is a product of elementary matrices, we can use 5.12 and Theorem 5.13.1 to show
that A is invertible. (The inverse of the product is the product of the inverses in the reverse
order.) So we get (a).

TO BE COMPLETED (and checked)
Richard M. Timoney February 18, 2008
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