Mathematics 121 2004–05 Exercises 4 [Due Wednesday January 26th, 2005.]

1. Recall that we define right-hand limits $\lim_{x\to a^+} f(x)$ in case the domain of f includes an open interval (a, b) with b > a and in this situation the limit is ℓ if and only if

For each $\varepsilon > 0$ there exists $\delta > 0$ so that

$$0 < x - a < \delta \Rightarrow |f(x) - \ell| < \varepsilon$$

Prove that the following sequence criterion is equivalent to $\lim_{x\to a^+} f(x) = \ell$:

For each sequence $(x_n)_{n=1}^{\infty}$ in the domain of f with $x_n > a$ for all n and $\lim_{n\to\infty} x_n = a$, it is true that

$$\lim_{n \to \infty} f(x_n) = \ell.$$

2. Recall: The left-hand limit $\lim_{x\to a^-} f(x) = \ell$ means the domain of f includes an open interval (c, a) with c < a and

For each $\varepsilon > 0$ there exists $\delta > 0$ so that

$$0 < a - x < \delta \Rightarrow |f(x) - \ell| < \varepsilon$$

Assuming that $f: S \to \mathbb{R}$ is a function defined on $S \subset \mathbb{R}$ where S contains an open interval to the left of a, prove that the following sequence criterion is equivalent to $\lim_{x\to a^+} f(x) = \ell$:

For each sequence $(x_n)_{n=1}^{\infty}$ in the domain of f with $x_n < a$ for all n and $\lim_{n\to\infty} x_n = a$, it is true that

$$\lim_{n \to \infty} f(x_n) = \ell.$$

3. Assuming that $f: S \to \mathbb{R}$ is a function defined on $S \subset \mathbb{R}$ where S contains a punctured open interval about $a \in \mathbb{R}$ show that

$$\lim_{x \to a} f(x) = \ell \iff \lim_{x \to a^+} f(x) = \ell \text{ and } \lim_{x \to a^-} f(x) = \ell$$

[Hint: The \Leftarrow direction is probably easiest using ε - δ .]

Assuming that f: S → R is a function defined on S ⊂ R where S contains a punctured open interval about a ∈ R show that lim_{x→a} f(x) exists if and only if both one-sided limits (lim_{x→a⁺} f(x) and lim_{x→a⁻} f(x)) exist and

$$\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x)$$

[Hint: Use the previous problem.]

5. If $S \subset \mathbb{R}$ is a compact set and $f: S \to \mathbb{R}$ is continuous, show that the range $f(S) = \{f(x) : x \in S\}$ is also a compact set.

(In summary 'continuous images of compact sets are compact.')

- 6. If $S \subset \mathbb{R}$ is compact show that S is bounded.
- 7. If $S \subset \mathbb{R}$ is compact and non-empty, show that $lub(S) \in S$.