Mathematics 121 2004–05 Exercises 3 [Due Wednesday December 8th, 2004.]

1. Show, by directly using the ε -N definition of limits of sequences, that the following statements are correct:

(a)
$$\lim_{n \to \infty} 1 + \frac{(-1)^n}{n+1} = 1$$

(b) $\lim_{n \to \infty} \frac{n^3 - 5n^2 + 2n + 7}{4n^3 + n - 1} = \frac{1}{4}$

- 2. Use the theorem on limits of sums, products and quotients to give another proof of the statement in part (b) of question 1.
- 3. Prove that if $(x_n)_{n=1}^{\infty}$ is a bounded sequence and $\lim_{n\to\infty} y_n = 0$, then $\lim_{n\to\infty} x_n y_n = 0$.
- 4. Give an example of two sequences $(x_n)_{n=1}^{\infty}$ and $(y_n)_{n=1}^{\infty}$ where $\lim_{n\to\infty} (x_n + y_n)$ exists but

$$\lim_{n \to \infty} (x_n + y_n) \neq \lim_{n \to \infty} x_n + \lim_{n \to \infty} y_n$$

- 5. If a sequence $(x_n)_{n=1}^{\infty}$ has integer terms $(x_n \in \mathbb{Z} \text{ for all } n)$ and $\lim_{n\to\infty} x_n = \ell \in \mathbb{R}$, what can you say about ℓ and x_n for n large?
- 6. If $f: \mathbb{R} \to \mathbb{R}$ is bounded (meaning that the range $f(\mathbb{R}) = \{f(x) : x \in \mathbb{R}\}$ is bounded) show that

$$\lim_{x \to 0} x f\left(\frac{1}{x}\right) = 0.$$

7. Find an exmple of a function $f: \mathbb{R} \to \mathbb{R}$ where

$$\lim_{x \to 0} x f\left(\frac{1}{x}\right)$$

is not 0.