Mathematics 121 2004–05 Exercises 2 [Due Friday November 26th, 2004.]

- 1. Prove the following assertions based on the axioms (P1) (P12) for \mathbb{R} and the consequences of them we have checked earlier:
 - (a) $|x \cdot y| = |x| \cdot |y|$ (for $x, y \in \mathbb{R}$)
 - (b) $\left|\frac{1}{x}\right| = \frac{1}{|x|}$ (for $x \in \mathbb{R}, x \neq 0$)
- 2. Use the triangle inequality to show that if $a, b, c \in \mathbb{R}$ then the following are true:
 - (a) $|a-b| \ge |a| |b|$
 - (b) |a-b| > ||a| |b||
 - (c) $|a+b+c| \le |a|+|b|+|c|$
- 3. Find the least upper bound and the greatest lower bound of each of the following sets (or show that they do not exist):
 - (a) $\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$ (b) $\left\{\frac{1}{n}: n \in \mathbb{Z}, n \neq 0\right\}$ (c) $\left\{x \in \mathbb{R}: x = 0 \text{ or } x = \frac{1}{n} \text{ for some } n \in \mathbb{N}\right\}$ (d) $\left\{x \in \mathbb{Q}: 0 \le x \le \sqrt{2}\right\}$

Also, in each case, decide if there is a least and/or a greatest element in the set.

- 4. Show that if $x \in \mathbb{R}$ and $x \ge 0$, then there is $n \in \mathbb{N}$ with $n 1 \le x < n$. [Hint: If this is false, a proof by induction that $n \le x$ for all $n \in \mathbb{N}$ would work.]
- 5. Show that if $x \in \mathbb{R}$, then there is $n \in \mathbb{Z}$ with $n \le x < n + 1$. [Hint: Try $x \ge 0$ first.]
- 6. Show that every $x \in \mathbb{R}$ with $0 \le x < 1$ has a decimal expansion $x = 0.d_1d_2d_3... = \lim_{n\to\infty} \sum_{j=1}^n d_j 10^{-j}$ where each $d_j \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. [Hint: Choose d_1 so that $d_1 \le 10x < d_1 + 1$.]