Mathematics 121 2004—-05
Exam
[Tuesday, December 14, 9.30 — 11.00]
Attempt 3 questions.

1. (a) State the 4 axioms satisfied by the operatio(addition) on the real numbeRs.
Solution: Reproduce notes (P1) - (P4) (Chapter 1)

(b) Show that each real numbethas a unique additive inverse.
Solution: This is Lemma 1.4 in the notes.

(c) Show (using only the axioms for) that the following cancellation law holds for ad-
ditive equationsu,b,c e R,a+c=b+c=a =0b.
Solution: Adding the additive inversec of ¢ to both sides we get from+c = b+ ¢

that
(a+c)+ (—c) = (b+c)+ (—¢)

and rearranging both sides with the associative law for addition this gives
a+(c+(—¢c) =b+ (c+ (—0))
The definition of an additive inverse implies that (—c¢) = 0 and so we have
a+0=0+0

from which we get
a=>b

by the defining property of 0.

2. (a) Define the ternupper boundor a subset oR and the termeast upper boundAlso
state the least upper bound principle.

Solution: See Definition 1.16 and (P13) in the notes

(b) Prove that the natural numbers are not bounded abaoRe in
Solution: See proof of Proposition 1.18(i) in the notes.
(c) Give an example of a hon-empty set of rational numbers which is bounded above but
has no least upper bound@ Justify your example.
Solution:One example i$ = {x € Q : 0 < x andz? < 2},
Notice thatS c Q as required (“set of rational numbers”) afid# () becausé € S.
S is bounded above by 2. To see this suppose on the contrary andz > 2. Then
2?2 > 2x > 2% = 4 > 2, contradictingz? < 2. We conclude that < 2 for each
x € S, thatis that 2 is an upper bound {6r
Note thatS € Q C R and the least upper bound principle implies that there is a least
upper bound: € R for S. Our claim is that. ¢ Q.



If u € Q then we know:? # 2 asv/2 ¢ Q, and thus there are two other possibilities
(i) v? < 2 and (i) u? > 2. We now show that neither (i) nor (ii) are the case.

If u* < 2 (andu € Q), we claim that there is € N with u 4+ 1 € S (and this would
contradictu being an upper bound). Now
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It follows that (u + %)2 < 2if u?+ 2 < 2 or, equivalently if2H < 2— 2. Since
u>1¢€ S, wehavey > 0and so2u + 1 > 0. Thus2“H < 2 — «? is equivalent

to % < % We can find am € N with this property by the proposition above. For

suchn € N we then have(qu%)2 <2andu+1 >u>0. Henceu+1 e S
contradictingu an upper bound fof. So (i) is eliminated.

If u> > 2 we claim that there is € N so thatu — % is an upper bound fos (smaller
than the least upper bourttl and so a contradiction). We choosec N so that
(u—1)* > 2. This we can do because
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and this will be> 2 we ensure
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We can arrange this by choosinge N (via the proposition above) so that §r<

“Zf. This is possible because> 0 and we are assuming — 2 > 0.

Having chosem so that(u — %)2 > 2 we claim now that: — X is an upper bound

for S. If not therez € S withz > u — 1. Sinceu > 1 € S and1/n < 1 we have

u — % >0.So
1 1\’
1:2>1:<u——) > (u——> > 2
n n
contradictingr € S.

So now we have shown that there is an upper baurd1/n for S strictly smaller
than the supposed least upper boundhus (ii) is not possible.

Having eliminated (i) and (ii) we see that¢ Q, as claimed.

3. (a) Give thee-N definition of the limit of a sequence of real numbers. Show that a
bounded monotone sequencerinas a limit inR.

Solution: Definition 2.5 in the notes and proof of Theorem 2.14.



(b) Give an example of a bounded sequeficg , in R which is not convergent. [Prove
carefully that it is not convergent.]
Solution: The sequencér,, ), wherex,, = (—1)" is bounded since-1 < z,, < 1
for all n and so it is bounded above by 1 and below-hly (Bounded means bounded
above and bounded below.) It has no limit.
See Examples 2.10 part (iii) in the notes for one proof that it has no limit.
Another proof that the sequente,)>2 ; wherez,, = (—1)" has no limitis to use the
fact that iflim,,_,, z,, = ¢ then every subsequenﬁ:gj);';1 has the same limit. In
this example taking.; = 2;j gives the constant sequencg = z; = (—1)¥ =1
with limit 1. On the other hand taking; = 25 + 1 gives the constant sequence
Tn, = T+ = (—1)¥*! = —1 with a different limit—1. Solim, . x, cannot
exist.

(c) Show that every convergent sequenc®iis bounded.
Solution: Supposéx,,)>° ; is a convergent sequence withy,, ., x,, = ¢ € R.
Then fore = 1 > 0 we can find (by the definition of limit of a sequend€)e N so

that
n>N= |z, -/ <Ll
Consequently
n>N=/0-1<gzx,</{+1.
Take

L = min(zy,29,...,xxy-1,{ — 1)
(or L = ¢ — 1ifit happens thatV = 1) and
U = max((z1,xe,...,xn_1,0+ 1)
(or L = ¢+ 1if it happens thatV = 1) and then we can say that
forallne N, L <z, <U

So the set{x,, : n € N} is bounded below (by.) and above (by). Thus the
sequence is bounded.

[Note: In the proof of Theorem 2.9 (iii), this argument (or one similar) occurred.]

4. (a) Under what circumstances do we define, ., f(x) for a functionf(x) anda € R?
How is the limit then defined?

Solution: (Definition 3.5 in the notes.)

CircumstancesS C R a subsetf: S — R a real-valued function of, a € S andS
contains a punctured open interval abaut

Let/ € R be a number. Then we say thds a limit of f asx approaches and write
lim f(x) =4¢

if the following holds:



for each sequencer,)>, in S\ {a} with lim, . z,, = a it is true that
lim,, o f(x,) = ¢.
Give thee-§ criterion forlim, ., f(z) = ¢ to be true. [That is, state the criterion but
you are not asked to prove that it is a valid criterion.]

Solution: Theorem 3.9 in the notes.
For eacle > 0 itis possible to findd > 0 so that

|f(xz) —¢] < eforeachr € Rwith 0 < |z — a| < 6.

Define continuity of a functiorf: S — R at a pointa € S (whereS C R).
Solution: Definition 3.10

(b) Show that the functiorf: R — R given by the rule

1 ifz>0
f(x) = 0 ifz=0
-1 ifz<0

is continuous at every # 0 but is not continuous at 0.
Solution:Fora # 0 and any: > 0, taked = |a|. Then ifa > 0 we havel = a and

lt—a|<d=0<2x<2a= f(z)=fla)=1=|f(x) — fla)|=0<c¢
If @ <0, thend = —a and
z—a|<d=2a<2<0= f(z)=f(a)=—-1=|f(x) — fla)]=0<e¢

Hencef is continuous at (if a # 0).
If « = 0 we show that foe = 1/2 it is impossible to findd > 0 so that

v —a = |o| < 3= |f(2) - f(a)] <.

No matter whatt > 0 is chosenz = 0/2 satisfies|z| < § but |f(z) — f(a)|] =
1-0/=1+¢¢e=1/2.

Show thatg: R — R given by the rulgy(z) = (2% + z) f(x) is continuous at every
a € R.

Solution: Fora # 0 we havelim, ., f(z) = f(a) by continuity of f at « and
lim, (22 + ) = a® + a by continuity of polynomials. Stim,_., g(z) = g(a) by
the theorem on limits of products.

Fora = 0 we could consider any sequenge,)> , with lim, .., z, = 0. Then
lim,, (22 + x,) = 0 by continuity of the polynomiak? + x at 0. The sequence
(f(x,))22, is bounded (above by 1 and below byt) and so

lim g(z,) = lim (22 + 2,) f(7,) =0

n—oo n—oo
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by one of the exercises.
Another way would be to take amy> 0 given and to note that

l9(2) = g(0)] = |(=* + @) f(2)| < |2f* + ||
by the triangle inequality and the fact théd{z)| < 1 always. So ifz| < 1 we have
l9(z) = g(0)] < || + || = 2|x].
Thus if we take) = min(1,/2) we have
|z —0] <0 =|z| < land|z| < % = |g(x) — g(0)] < 2|z| < e.

This shows continuity at O af.

Richard M. Timoney February 7, 2005



