
Chapter 4: Continuous functions (121 2004–05)

While we have introduced continuous functions in the last chapter (functions
that are continuous at each point of their domain), we have basically dealt with
properties of continuity at single points. We now go on to deal with properties that
are harder to prove and are more significant. They are ‘global’ properties, meaning
that they depend on knowing that the function is continuous at each point of its
domain, but they also depend in an important way on properties of the domain
(usually an interval or a finite closed interval in these theorems).

The theorems are true because of a combination of properties of continuity
and the interval.

Definition 4.1. A subsetS ⊂ R is called (sequentially)compactif each sequence
(xn)∞n=1 in S has a subsequence(xnj)

∞
j=1 which converges to a limitlimj→∞ xnj ∈

S (in the setS).

Note that this is a property that considersall possiblesequences of terms in
S. The reason to mention thesequentiallyis that there is a more abstract way
of defining compactness which applies in more abstract settings. However, this
definition is equivalent in the setting we are in of subsets ofR.

Theorem 4.2 (Heine–Borel).Finite closed intervals[a, b] ⊂ R are compact sets.

Proof. Consider any sequence(xn)∞n=1 in [a, b].
Being a bounded sequence, by the Bolzano-Weierstrass Theorem (2.19) there

is a subsequence(xnj)
∞
j=1 which converges to a limit̀ ∈ R. We claim that̀ ∈

[a, b].
If not ` < a or ` > b.
If ` < a we can arrive at a contradiction as follows. Takeε = (a− `)/2 in the

ε-N definition oflimj→∞ xnj = `. We can findJ so that|xnj − `| < ε for j ≥ J .
But a ≤ xn for all n, so |xnj − `| = xnj − ` ≥ a − ` = 2ε > ε so thatj = J
cannot satisfy|xnj − `| < ε. This is a contradiction.

We can similarly rule out̀ > b by takingε = (`− b)/2 (if ` > b) and showing
that noj satisfies|xnj − `| < ε.

(Because of the way this theorem follows from the Bolzano-Weierstrass the-
orem without any really hard work, people sometimes consider them as more or
less the same theorem. There is this additional aspect of the limit being in the
set. Indeed the set does not come into the Bolzano-Weierstrass, as that is about a
bounded sequence.)
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Definition 4.3. If f :S → R is a real-valued function (on any setS), thenf is
calledbounded aboveif its rangef(S) ⊂ R is bounded above. In other words,f
is bounded above if there exists a numberM ∈ R so thatf(x) ≤M for all x ∈ S.

Similarly f is calledbounded belowif there existsL ∈ R so thatL ≤ f(x)
holds for allx ∈ S (or, equivalently, iff(S) is bounded below).

A functionf :S → R is called boundedif it is both bounded above and
bounded below.

Theorem 4.4. If f : [a, b]→ R is a continuous function on a finite closed intervals
[a, b] ⊂ R thenf is bounded.

Proof. If f is not bounded, then it is not true for anyn ∈ N that−n ≤ f(x) ≤ n
for all x ∈ [a, b]. (If −n ≤ f(x) ≤ n for all x ∈ [a, b], thenf is bounded above
by n and below by−n.) In other words it is not the case that|f(x)| ≤ n holds for
all x ∈ [a, b] and so there must be at least onexn ∈ [a, b] with |f(xn)| > n. Chose
one suchxn for eachn ∈ N and we now have a sequence(xn)∞n=1 in [a, b].

By Theorem 4.2, there is a subsequence(xnj)
∞
j=1 which converges to a limit

` ∈ [a, b].
Nowf is continuous at̀ ∈ [a, b] and(xnj)

∞
j=1 is a sequence in[a, b] converging

to `. Solimj→∞ f(xnj) = f(`) and, as a convergent sequence,
(
f(xnj)

)∞
j=1

must
be a bounded sequence (see the proof of Theorem 2.9 (iii) for a proof of this). But
we have|f(xnj)| > nj ≥ j for all j and this is incompatible with the sequence
being bounded. (IfL,M ∈ R satisfyL ≤ f(xnj) ≤ M for all j, then|f(xnj)| ≤
max(|L|, |M |) for all j and this would implyj < max(|L|, |M |) for all j ∈ N—
impossible asN is not bounded above.)

Example 4.5. There are simple examples that show that the result is false if the
interval is not closed or if there is even one point in the interval where the function
fails to be continuous.

For examplef : (0, 1]→ R given byf(x) = 1/x is not bounded above, though
it is continuous. [Not bounded above becausef(1/n) = n, so thatN ⊂ f((0, 1]),
andN not bounded above.]

We can make a discontinuous example by consideringg: [0, 1]→ R with

g(x) =

{
0 if x = 0

1/x if x 6= 0

Another example ish: [0,∞) → R, h(x) = −x which is continuous but not
bounded (below). The domain[0,∞) is considered a closed interval because it
includes its only finite endpoint 0.
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Theorem 4.6.Letf : [a, b]→ R be a continuous function on a finite closed inter-
val [a, b] wherea ≤ b. Thenf has a largest value and a smallest value.

That is there existxL, xM ∈ [a, b] so thatf(xL) ≤ f(x) ≤ f(xM) holds for
all x ∈ [a, b].

Proof. We use Theorem 4.4. To start with, we prove that there is somexM ∈ [a, b]
with f(x) ≤ f(xM) for all x ∈ [a, b].

The rangef([a, b]) is a nonempty set (a ∈ [a, b] ⇒ f(a) ∈ f([a, b]) for
example) and by Theorem 4.4 it is bounded above. By the least upper bound
principle, there is a least upper boundU ∈ R for f([a, b]). Sof(x) ≤ U for all
x ∈ [a, b] (and no number inR strictly smaller thatU has this property). We want
to find xM so thatf(xM) = U . If no suchxM exist thenf(x) < U holds for all
x ∈ [a, b] and we can define a continuous functiong: [a, b]→ R by

g(x) =
1

U − f(x)

(because the denominator is never 0, this makes sense for allx ∈ [a, b] and defines
a continuous function). Applying Theorem 4.4 tog we find there is someU0 ∈ R
with g(x) ≤ U0 for all x ∈ [a, b]. Then, asg(x) > 0 (reason:f(x) < U ) we have
1/g(x) = U − f(x) ≥ 1/U0 and so

U − 1

U0

≥ f(x)

for all x ∈ [a, b]. As U0 ≥ g(a) > 0 we haveU − 1/U0 an upper bound forf
strictly smaller than the least upper boundU — a contradiction.

HencexM ∈ [a, b] with f(xm) = U must exist.
For the existence ofxL we could repeat a similar argument using the greatest

lower bound, or we can apply what we have just proved to the continuous function
h: [a, b] → R given byh(x) = −f(x). If xL ∈ [a, b] is such thath(x) ≤ h(xL)
for all x ∈ [a, b], thenf(x) ≥ f(xL) for all x.

Theorem 4.7 (Intermediate Value Theorem).Letf : [a, b]→ R be a continuous
function on a finite closed interval withf(a) < 0 < f(b). Then there is some
c ∈ (a, b) with f(c) = 0.

(This theorem is the one that makes the word ‘continuous’ especially con-
vincing. In graphical terms it says that the graph of a continuous function on an
interval cannot jump from being negative to positive without being actually 0 at
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some place. If you imagine drawing a graph of a function starting atx = a and a
negative value ofy, ending atx = b with a positive value ofy, and if you don’t
allow yourself to lift your pen in between, you will be fairly convinced that the
graph has to cross the axisy = 0.

However, that is not a proof. To convince yourself that the result is not obvi-
ous, imagine that we only had rational numbers instead of all the real numbers.
Then the functionf(x) = x2 − 2 on [0, 2] ∩ Q starts out aty = f(0) = −2 < 0
and ends up aty = f(2) = 2 > 0 but (as there is no

√
2 in Q) is never 0. Thus

the Intermediate Value Theorem is actually a result of continuity plus the fact that
there are no holes in the real axis (no numbers left out that ‘should’ be there, or
no points on the line that do not correspond to a real number).

Proof. Let S = {t ∈ [a, b] : f(x) < 0 for all x ∈ [a, t]}. Notice thata ∈ S and so
S 6= ∅. Being bounded above byb, S must have a least upper boundc. We claim
thata < c < b and thatf(c) = 0.

To help with the proof we divide part of it out as a lemma, and then we will
return to the proof.

Lemma 4.8. Let f :S → R be a function on a setS ⊂ R that is continuous at a
pointx0 ∈ S and that satisfiesf(x0) > 0. Then there is aδ > 0 so that

x ∈ S, |x− x0| < δ ⇒ f(x) > 0.

Proof. If f(x0) > 0 then ε = f(x0)/2 > 0 and we can use the definition of
continuity off atx0 to find δ > 0 so that

x ∈ S, |x− x0| < δ ⇒ |f(x)− f(x0)| < ε.

But if |f(x)−f(x0)| < ε, then it follows thatf(x)−f(x0) > −ε = −f(x0)/2⇒
f(x) > f(x0)/2 > 0. Hence, for thisδ > 0 we have

x ∈ S, |x− x0| < δ ⇒ f(x) > 0.

Lemma 4.9. Let f :S → R be a function on a setS ⊂ R that is continuous at a
pointx0 ∈ S and that satisfiesf(x0) < 0. Then there is aδ > 0 so that

x ∈ S, |x− x0| < δ ⇒ f(x) < 0.

Proof. Apply Lemma 4.8 to−f(x).
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Proof. (of Theorem 4.7 continued)
First note thatf(a) < 0 and so by Lemma 4.9 there isδ > 0 so thatx ∈

[a, b], |x − a| < δ ⇒ f(x) < 0. As f(b) > 0, we must haveδ ≤ b − a. Also
a ≤ x < a + δ ⇒ x ∈ [a, b], |x− a| < δ ⇒ f(x) < 0. Hencea ≤ x < a + δ ⇒
f(t) < 0 for all t ∈ [a, x]. Thus[a, a+ δ) ⊂ S.

Hencec = lub(S) ≥ a+ δ > a.
Also f(b) > 0 and so by Lemma 4.8 there isδ0 > 0 so thatx ∈ [a, b], |x−b| <

δ0 ⇒ f(x) > 0. Sincef(a) < 0 we must haveδ0 < b − a. Also, b − δ0 < x ≤
b ⇒ x ∈ [a, b], |x − b| < δ0 ⇒ f(x) > 0 ⇒ x /∈ S. ThusS ⊂ [a, b − δ0] and
c ≤ b− δ0 < b. Hence we havec ∈ (a, b).

Finally, we claim thatf(c) = 0. If not eitherf(c) > 0 or f(c) < 0.
If f(c) > 0 we can apply Lemma 4.8 to findδ1 > 0 so thatx ∈ [a, b], |x−c| <

δ1 ⇒ f(x) > 0. But thenδ1 > c − a sincef(a) < 0 and we havec − δ1 < x ≤
c ⇒ x ∈ [a, b], |x − c| < δ1 ⇒ f(x) > 0 ⇒ x /∈ S. As S ⊂ [a, c] (because
c = lub(S) andS ⊂ [a.b]) we must haveS ⊂ [a, c − δ1] andc − δ1 is an upper
bound forS strictly less than the least upper bound. This contradiction rules out
f(c) > 0.

If, on the other hand,f(c) < 0, then we can apply Lemma 4.9 to findδ2 > 0
so thatx ∈ [a, b], |x − c| < δ2 ⇒ f(x) < 0. Sincef(b) > 0 we must have
c+ δ2 ≤ b.

As c− δ2 < c = lub(S), c− δ2 cannot be an upper bound forS and so there is
t ∈ S with t > c− δ2. Certainlyt ≤ c and sot ∈ (c− δ2, c]. Considerc + δ2/2.
We knowf(x) < 0 for all x ∈ [a, t] (sincet ∈ S) and also for allx ∈ [t, c+ δ2/2]
becausex ∈ [t, c+ δ2/2]⇒ x ∈ [a, b] and|x− c| < δ2. Putting these together we
havef(x) < 0 for all x ∈ [a, t]∪ [t, c+ δ2/2] = [a, c+ δ2/2] and soc+ δ2/2 ∈ S.
But c+ δ2/2 > c = lub(S) is then a contradiction.

These leavesf(c) = 0 as the only possibility.

Example 4.10.There is a positive numberx ∈ R with x2 = 3.
Considerf : [1, 2] → R given byf(x) = x2 − 3. We havef(1) = −2 < 0 <

1 = f(2) and also thatf is continuous on[0, 1]. (In factx 7→ x2− 3 is continuous
on R since it is a polynomial and thenf is the restriction of the polynomial to
[1, 2], hence continuous.)

By the Intermediate Value Theorem, there isx ∈ (1, 2) with f(x) = 0, that is
x2 − 3 = 0.

(You might like to compare this with the proof in 1.19 that there is a number√
2 ∈ R. Of course we have a lot more theory involved now, but the proof is

almost effortless now.)
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Corollary 4.11 (Intermediate Value Theorem, marginally improved). Letf : [a, b]→
R be a continuous function on a finite closed interval, and lety0 ∈ R with
f(a) < y0 < f(b). Then there is somec ∈ (a, b) with f(c) = y0.

Proof. Apply Theorem 4.7 to the functiong: [a, b]→ R whereg(x) = f(x)− y0.
We haveg(a) < 0 < g(b). If g(c) = 0 thenf(c) = y0.

Corollary 4.12 (Intermediate Value Theorem, slight variation). Letf : [a, b]→
R be a continuous function on a finite closed interval, and lety0 ∈ R with f(a) >
y0 > f(b). Then there is somec ∈ (a, b) with f(c) = y0.

Proof. Apply Corollary 4.11 to the functiong: [a, b] → R whereg(x) = −f(x).
We haveg(a) < −y0 < g(b). If g(c) = −y0 thenf(c) = y0.

Proposition 4.13.A subsetS ⊂ R is an interval if and only if it has the following
“between-ness” property:

If α, β ∈ S with α < β, then[α, β] ⊂ S

Proof. ⇒: It is easy to see that every interval (see 3.2) has this property.
⇐: AssumeS ⊂ R is a subset with the “between-ness” property above. If

S = ∅, theS = (a, a) for anya ∈ R. SoS is an interval. IfS = {a} has just one
point, thenS = [a, a] is also an interval.

From now on we assume thatS has more than one point. The proof is based
on considering several cases about whetherS is bounded above or not, bounded
below or not.

First assumeS is both bounded above and bounded below. Leta = glb(S),
b = lub(S). They exist sinceS is not empty. We must havea < b since ifa = b
thenS ⊂ [a, a] could only have one point. We claim that(a, b) ⊂ S. To show
this, letx ∈ (a, b). Thenx < b = lub(S) ⇒ x not an upper bound forS ⇒
there isβ ∈ S with x < β. Also, x > a = glb(S) ⇒ x not a lower bound for
S ⇒ there isα ∈ S with x > α. Nowα < x < β and so by the “between-ness”
property ofS we havex ∈ [α, β] ⊂ S. Since this is true about eachx ∈ (a, b)
we have(a, b) ⊂ S. Also, from the definitions ofa andb, S ⊂ [a, b]. This leaves
4 possibilities forS, [a, b], [a, b), (a, b] and(a, b) depending on whethera ∈ S
and/orb ∈ S.

Next consider the case whereS is bounded above but not below. Putb =
lub(S). We claim that(−∞, b) ⊂ S ⊂ (−∞, b]. The proof is essentially identical
the the argument we have just given. We then have two possibilitiesS = (−∞, b]
andS = (−∞, b) depending on whetherb ∈ S or not.
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If S is bounded below but not above, puta = glb(S) and then a similar argu-
ment showsS = [a,∞) or S = (a,∞).

Finally if S is not bounded above and not bounded below, we can show that
R ⊂ S (becausex ∈ S ⇒ x is neither an upper bound not a lower bound for
S ⇒ there areβ, α ∈ S with x < β andx > α — hencex ∈ [α, β] ⊂ S by the
“between-ness” property ofS.

In all cases, we end up withS being an interval.

Theorem 4.14. If I ⊂ R is an interval andf : I → R is a continuous function,
then the rangef(I) is an interval.

Proof. According to Proposition 4.13, it is sufficient to show thatf(I) has the
“between-ness” property.

Let α, β ∈ f(I) with α < β. Then there must bea, b ∈ S with f(a) = α
andf(b) = β. To show(α, β) ⊂ f(I), takey0 ∈ (α, β). Then there are two
situations.

a < b: Then we havef(a) = α < y0 < β = f(b) and we can apply
Corollary 4.11 to getc ∈ (a, b) ⊂ I with f(c) = y0. Hencey0 ∈ f(I).

a > b: Then we havef(b) = β > y0 > α = f(a) and we can apply
Corollary 4.12 on the interval[b, a] to getc ∈ (b, a) ⊂ I with f(c) = y0. Hence
y0 ∈ f(I).

Thus, we have shown(α, β) ⊂ f(I). Sinceα, β ∈ f(I), we have[α, β] ⊂
f(I).

This establishes thatf(I) has the “between-ness” property.

(In an abstract sense, this theorem is another incarnation of the Intermediate
Value Theorem.)

We now apply some of the results to the situation ofpolynomials. A polyno-
mial is a a finite sump(x) = a + 0 + a1x + · · · + anx

n =
∑n

j=1 ajx
j for some

constantsaj ∈ R (0 ≤ j ≤ n). If an 6= 0 we say thatn is thedegreeof the
polynomial, while ifan = 0, we can rewrite the sum without anyxn term.

Sometimes the termmonic polynomialis used for polynomialsp(x) = xn +∑n−1
j=0 ajx

j where the coefficient ofxn is 1. Most questions about polynomial
equationsp(x) = 0 can be reduced to questions wherep(x) is monic (by dividing
across byan if an 6= 1, with n the degree)

Proposition 4.15. If p(x) =
∑n

j=0 ajx
j is a polynomial of degreen, then there is

R > 0 so that

|p(x)− anxn| <
1

2
|anxn|
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holds for allx with |x| > R.

(In other words for|x| large, the highest termanxn dominates all the others.)

Proof. It is enough to prove the result forp(x) monic (as can be seen by dividing
p(x) by an.

Assumingan = 1, takeR = max
(

1, 2
∑n−1

j=0 |aj|
)

. Then we have

p(x)− xn =
n−1∑
j=0

ajx
j

and for|x| > R. Thus

|p(x)− xn| ≤
n−1∑
j=0

|aj||x|j ≤
n−1∑
j=0

|aj||x|n−1

using the triangle inequality first and then the observation|x| > 1 ⇒ |x|j ≤
|x|j+1. Thus we have

|p(x)− xn| ≤

(
n−1∑
j=0

|aj|

)
|x|n−1 ≤ (R/2)|x|n−1 < (|x|/2)|x|n−1 = |x|n/2.

Proposition 4.16.Any odd degree polynomial equation
∑n

j=0 ajx
j = 0, or

a0 + a1x+ a2x
2 + · · ·+ anx

n = 0,

(with n odd andan 6= 0) has a solutionx ∈ R.

Proof. Fix an odd degree polynomial equation,p(x) =
∑n

j=0 ajx
j = 0. Dividing

by an, it is enough to how that in the casean = 1 (monic polynomial case) the
equation has a solution. So takep(x) =

∑n−1
j=0 ajx

j + xn.
By Proposition 4.15, we can findR so that

|x| > R⇒ |p(x)− xn| ≤ 1

2
|x|n.
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This means that, forx = R + 1 we have

|p(R + 1)− (R + 1)n| <
1

2
(R + 1)n

⇒ (R + 1)n − 1

2
(R + 1)n < p(R + 1) < (R + 1)n +

1

2
(R + 1)n

or
1

2
(R + 1)n < p(R + 1) <

3

2
(R + 1)n.

In particularp(R + 1) > 0.
Taking nowx = −(R + 1) we get

|p(−(R + 1))− (−(R + 1))n| < 1

2
| − (R + 1)n|

and sincen is odd this means

|p(−(R + 1)) + (R + 1)n| <
1

2
(R + 1)n

⇒ −(R + 1)n − 1

2
(R + 1)n < p(−(R + 1)) < −(R + 1)n +

1

2
(R + 1)n

and from this we conclude thatp(−(R + 1)) < −1
2
(R + 1)n < 0.

Now we can apply the Intermediate Value Theorem (4.7) to the continuous
function p(x) on the interval[−(R + 1), R + 1] to conclude that there is some
x ∈ (−(R + 1), R + 1) with p(x) = 0.

Note: A lot of mathematics has arisen from the desire to understand how to
solve equations. Here we have quite a general results about equations. It implies
that every odd degree polynomialp(x) with real numbers as coefficients can be
factored, if you use the remainder theorem. The remainder theorem tells you that
if a polynomialp(x) hasp(c) = 0 the the polynomialx − c of degree 1 divides
p(x).

Corollary 4.17. If p(x) is an odd degree polynomial, then the functionp:R→ R

given by the polynomial is surjective.

Proof. If y0 ∈ R, then the equationp(x) = y0 can be rewrittenp(x) − y0 = 0
and so it is an odd degree polynomial to which the previous result applies. So
there isx ∈ R with p(x) − y0 = 0 or p(x) = y0. This shows that the function is
surjective.
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Proposition 4.18. For any even degree polynomialp(x) =
∑n

j=0 ajx
j = 0 with

leading coefficientan > 0 (n even), there isxL ∈ R so that

p(xL) =
n∑
j=0

ajx
j
L ≤

n∑
j=0

ajx
j = p(x)

holds for allx ∈ R.

(In other words even degree polynomials with positive leading term have a
smallest value. It follows that those with even degree polynomials with a negative
leading term have a largest value.)

Proof. By Proposition 4.15 (and usingan > 0), we can findR so that

|x| > R⇒ |p(x)− anxn| ≤
1

2
an|x|n.

As n is even, we can simplify this a little because|x|n = xn.
It implies that, for|x| = R + 1 we have

|p(R + 1)− an(R + 1)n| ≤ 1

2
an(R + 1)n

⇒ 1

2
an(R + 1)n < p(R + 1) <

3

2
an(R + 1)n.

Also for |x| > 2(R + 1)

|p(x)− xn| <
1

2
xn

⇒ 1

2
xn < p(x)

⇒ 1

2
(2(R + 1))n = 2(R + 1)n < p(x)

⇒ p(R + 1) < p(x).

It follows that if we are looking for a smallest value, then nox with |x| >
2(R+1) could provide it. We should concentrate on looking then forx ∈ [−2(R+
1), 2(R + 1)]. But now we have a continuous functionp(x) on a finite closed
interval [a, b] = [−2(R + 1), 2(R + 1)] and Theorem 4.6 assures us that there is
xL ∈ [−2(R + 1), 2(R + 1)] with

p(xL) ≤ p(x) for all x ∈ [−2(R + 1), 2(R + 1)].
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In particularp(xL) ≤ p(R + 1) and sop(xL) ≤ p(x) holds for allx with |x| >
2(R + 1) (recallp(R + 1) < p(x) for thosex).

So now we have
p(xL) ≤ p(x) for all x ∈ R.

An example of the Proposition would bep(x) = 2(x−1)2−5 = 2x2−4x−3
which hasp(1) = −5 ≤ 2(x− 1)2 − 5 = p(x) for all x. In terms of equations, it
means we cannot solve2x2 − 4x− 3 = y0 if y0 < −5.

The Proposition does not imply it, but we can solve2x2 − 4x − 3 = y0 for
all y0 ≥ −5. To prove that we could use that the largest term (2x2 in this case)
dominates for|x| large, and so2x2 − 4x− 3 > 1

2
(2x2) = x2 for |x| large enough.

This means that there is somex with 2x2− 4x− 3 > y0 (any fixedy0 we choose).
From this we can establish that the intervalp(R) which is the range ofp(x) =
2x2 − 4x− 3 must be[−5,∞) in this case.

In fact for a general even degree polynomialp(x) with positive leading term
the rangep(R) = [p(xL),∞) as long as the degree is not 0 (constant polynomial).
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A Appendix — April

Theorem A.1. If I ⊂ R is an interval andf : I → R is a continuous injective
function, thenf must be strictly monotone.

The proof of this result is more technical than difficult, as the main point is
that the intermediate value theorem holds.

As an example to indicate the importance of the domain being an interval,
consider the functionf :S → R whereS = [0, 1]∪ [2, 3] andf is given by the rule

f(x) =

{
x if x ∈ [0, 1]

5− x if x ∈ [2, 3]

It is fairly easy to see thatf is injective withf(S) = [0, 1]∪[2, 3] butf is monotone
increasing on[0, 1], monotone decreasing on[2, 3] and not monotone onS.

Our proof of the theorem will be broken down into small steps, via the follow-
ing lemmas.

Lemma A.2. SupposeI ⊂ R is an interval,f : I → R is a continuous injective
function,a, b ∈ I, a < b andf(a) < f(b).

Thenf([a, b]) = [f(a), f(b)].

Proof. We know thatf([a, b]) is an interval and sof([a, b]) ⊇ [f(a), f(b)].
To show it is equal, suppose there isy0 ∈ f([a, b]) \ [f(a), f(b)]. Theny0 =

f(x0) for somex0 ∈ (a, b) and eithery0 > f(b) or y0 < f(a).
If y0 > f(b), thenf([a, x0]) ⊂ [f(a), f(x0)] and containsf(b). So there is

x1 ∈ (a, x0) with f(x1) = f(b) — contradicting injectivity off (asx1 6= b,
x1, b ∈ I).

If y0 < f(a), thenf([x0, b]) ⊂ [f(x0), f(b)] and containsf(a). So there is
x1 ∈ (x0, b) with f(x1) = f(a) — contradicting injectivity off (asx1 6= a,
x1, a ∈ I).

As both are ruled out, we must havef([a, b]) = [f(a), f(b)].

Lemma A.3. SupposeI ⊂ R is an interval,f : I → R is a continuous injective
function,a, b ∈ I, a < b andf(a) < f(b).

Then

(i) α ∈ I, α < a⇒ f(α) < f(a), and

(ii) β ∈ I, β > b⇒ f(β) > f(b).
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Proof. To prove (i), note first from Lemma A.2 thatf([a, b]) = [f(a), f(b)] and
so, sincef is injective we havef(α) /∈ [f(a), f(b)]. Thus eitherf(α) < f(a) as
desired orf(α) > f(b). But if f(α) > f(b), thenf(α) > f(b) > f(a) and so,
by the Intermediate Value Theorem, there isx0 ∈ (α, a) with f(x0) = f(b) —
contradicting injectivity off (asx0 6= b). So we must havef(α) < f(a).

To prove (ii), we similarly deduce from Lemma A.2 thatf(β) /∈ [f(a), f(b)].
To rule outf(β) < f(a) we show that this situation would result inf(a) = f(x)
for somex ∈ (b, β).

Lemma A.4. SupposeI ⊂ R is an interval,f : I → R is a continuous injective
function,a, b ∈ I, a < b andf(a) > f(b).

Then

(i) α ∈ I, α < a⇒ f(α) > f(a), and

(ii) β ∈ I, β > b⇒ f(β) < f(b).

Proof. Apply Lemma A.3 tog: I → R given byg(x) = −f(x). Theng is injec-
tive andg(a) < g(b).

Lemma A.5. SupposeI ⊂ R is an interval,f : I → R is a continuous injective
function,a, b ∈ I, a < b andf(a) < f(b).

Thenf is strictly monotone increasing (onI).

Proof. The complete proof is rather detailed, but more tedious than difficult. The
hardest parts are done already.

We considerα, β ∈ I with α < β and we claim thatf(α) < f(β) must hold.
(When we establish the claim we will have shown thatf is strictly monotone
increasing, sinceα, β ∈ I are quite arbitrary withα < β.)

The proof is divided into several cases, depending on whereα, β lie with re-
spect toa, b.

Case 1: α < a.

subcase 1A:α < β ≤ a.
In this situation, sincef(α) 6= f(β) (by injectivity) we either have
f(α) < f(β) (as we claim) orf(α) > f(β).
If f(α) > f(β) then Lemma A.4 (ii) (usingα andβ where ‘a’ and
‘b’ occur in the Lemma), impliesf(β) > f(b) and sof(β) > f(b) >
f(a). Lemma A.3 (i) tells usf(β) < f(a), a contradiction.
Sof(α) < f(β) holds in this situation.
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subcase 1B:α < a < β < b.

By Lemma A.3 (i), in this casef(α) < f(a) while by Lemma A.2,
f(β) ∈ f([a, b]) = [f(a), f(b)] and sof(α) < f(a) ≤ f(β) ⇒
f(α) < f(β).

subcase 1C:α < a < b ≤ β.

By Lemma A.3 (i) and (ii), in this casef(α) < f(a) andf(b) ≤ f(β).
Sincef(a) < f(b) we deducef(α) < f(β).

Case 2: a ≤ α ≤ b.

subcase 2A:a ≤ α < β ≤ b.

As in case 1A, what we have to exclude isf(α) > f(β) (sincef(α) 6=
f(β) by injectivity of f ). But if f(α) > f(β) then by Lemma A.4
(i) and (ii) (usingα andβ where ‘a’ and ‘b’ occur in the Lemma) ,
f(a) ≥ f(α) andf(β) ≥ f(b). So

f(a) ≥ f(α) > f(β) ≥ f(b)⇒ f(a) > f(b),

a contradiction. We are forced therefore to havef(α) < f(β), as
claimed.

subcase 2B:a ≤ α < b ≤ β.

By Lemma A.2 and Lemma A.3 (ii), in this situation we havef(α) ∈
f([a, b]) = [f(a), f(b)] ⇒ f(α) ≤ f(b) andf(b) ≤ f(β). Since
f(α) 6= f(b) by injectivity, f(α) < f(b) ≤ f(β) ⇒ f(α) < f(β), as
claimed.

Case 3: a < b < α < β.

Again we must rule outf(α) > f(β), but if that happens Lemma A.4 (i)
(usingα andβ where ‘a’ and ‘b’ occur in the Lemma) implies thatf(a) >
f(α) while Lemma A.3 (ii) implies thatf(b) < f(α). Sof(α) < f(a) <
f(b) < f(α), a contradiction.

Proof. (of Theorem A.1)
We first dispose of the case whereI might be empty or a singleton. In these

casesf is vacuously strictly monotone increasing (and decreasing also) because
there are not two values off to be compared.
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Now, if I has at last two points, picka, b ∈ I with a 6= b and assume we have
labeled them so thata < b. Sincef is injective, we knowf(a) 6= f(b) and so
eitherf(a) < f(b) or elsef(a) > f(b).

If f(a) < f(b), then Lemma A.5 tells us thatf is strictly monotone increasing.
On the other hand iff(a) > f(b) we can considerg: I → R with g(x) =

−f(x). This g will also be injective and continuous onI andg(a) < g(b). By
the Lemma A.5g must be strictly monotone increasing, and this implies thatf
is strictly monotone decreasing (α, β ∈ I, α < β ⇒ g(α) < g(β) ⇒ −f(α) <
−f(β)⇒ f(α) > f(β)).

Theorem A.6. Let I ⊂ R be an interval andf : I → R an injective continuous
function. ForJ = f(I) = the range off , we takef−1 to mean the inverse of
the bijectionf : I → J (same values asf : I → R but a different co-domain, so
technically a different function). Thenf−1: J → I is continuous.

Proof. We know by Theorem A.1 thatf is strictly monotone and we give the proof
in the case wheref is strictly monotone increasing. The other case (decreasing) is
similar or can be deduced by consideringg(x) = −f(x) (andg−1(y) = f−1(−y)).

We know thatJ = f(I) is an interval (corollary to the Intermediate Value
Theorem).

Fix y0 ∈ J andε > 0. We aim to verify that there isδ > 0 satisfying the
implication

y ∈ J, |y − y0| < δ ⇒ |f−1(y)− f−1(y0)| < ε.

This will establish continuity off−1 aty0 (and sincey0 ∈ J is arbitrary, continuity
of f−1 onJ).

Let x0 = f−1(y0). There are a few different cases to consider, depending on
whether or notx0 + ε ∈ I andx0 − ε ∈ I.

If both x0 + ε ∈ I andx0 − ε ∈ I, putyL = f(x0 − ε) andyR = f(x0 + ε).
Takeδ = min(yR − y0, y0 − yL). Sincef is strictly monotone increasingy0 =
f(x0) < f(x0 + ε) = yR andyL = f(x0 − ε) < f(x0) = y0 and soδ > 0. Also

|y − y0| < δ ⇒ y0 − δ < y < y0 + δ

⇒ yL < y < yR

⇒ y ∈ J andf−1(yL) < f−1(y) < f−1(yR)

(The last step is justified becausef−1 must actually be strictly monotone in-
creasing as well asf . For example iff−1(yL) > f−1(y) then f(f−1(yL)) >



16 Chapter 4: Continuous functions

f(f−1(y))⇒ yL > y, which is false.) Now we have

|y − y0| < δ ⇒ x0 − ε = f−1(yL) < f−1(y) < f−1(yR) = x0 + ε

⇒ |f−1(y)− x0| < ε

and this is what we require becausex0 = f−1(y0).
Another extreme is the case when bothx0 + ε /∈ I andx0 − ε /∈ I. ThenI ⊂

(x0−ε, x0 +ε) and everyy ∈ J satisfies|f−1(y)−x0| = |f−1(y)−f−1(y0)| < ε.
Thus for anyδ > 0 positive (sayδ = 1 for the sake of being specific), we have

y ∈ J, |y − y0| < δ ⇒ |f−1(y)− f−1(y0)| < ε.

There are two other cases. Ifx0+ε /∈ I butx0−ε ∈ I, thenI ⊂ (−∞, x0+ε).
TakeyL = f(x0 − ε) andδ = y0 − yL. Then

y ∈ J, |y − y0| < δ ⇒ y ∈ J, y > yL

⇒ f−1(y) > f−1(yL) = x0 − ε
⇒ x0 − ε < f−1(y) < x0 + ε

(sincef−1(y) ∈ I)

⇒ |f−1(y)− f−1(y0)| < ε.

In the final case,x0 + ε ∈ I butx0− ε /∈ I. In this caseI ⊂ (x0− ε,∞). Take
yR = f(x0 + ε) andδ = yR − y0. Then

y ∈ J, |y − y0| < δ ⇒ y ∈ J, y < yR

⇒ f−1(y) < f−1(yR) = x0 + ε

⇒ x0 − ε < f−1(y) < x0 + ε

(sincef−1(y) ∈ I)

⇒ |f−1(y)− f−1(y0)| < ε.

Example A.7. If f :R → R is f(x) = x3, thenf is a bijection andf−1:R → R

is given byf(x) = x1/3 (cube root ofx). By the theoremf−1 is continuous.
Notice that sincef(R) is an interval and containsn3 > n and−n3 < −n for

eachn ∈ N we can see thatf(R) = R.
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Theorem A.8. Let I ⊂ R be an open interval (finite or infinite) and letf : I → R

be a differentiable injective function. TakeJ = f(I). ThenJ is also an open
interval and the inverse functionf−1: J → I is differentiable at a pointy0 ∈ J if
and only iff ′(f−1(y0)) 6= 0.

Moreover

f ′(y0) =
1

f ′(f−1(y0))

whenf ′(f−1(y0)) 6= 0.

Notice that a way to remember the result is to use Leibniz notation,y = f(x)
for x ∈ I, y ∈ J , x = f−1(y) and dy

dx
= f ′(x). Then the theorem says

dx

dy
=

1
dy
dx

with the added explanation thatdx/dy is normally evaluated at a pointy while
the dy/dx on the other side is evaluated a pointx related toy by y = f(x) or
x = f−1(y).

Proof. As differentiable functions are continuous,f most be strictly monotone
by Theorem A.1. We know thatJ = f(I) is an interval andJ has to be an
open interval sinceI is. The reason is that ifJ contained any endpointy0 of
itself, thenx0 = f−1(y0) ∈ I and cannot be an endpoint ofI becauseI is open.
So we can findx1, x2 ∈ I with x1 < x0 < x2. If f is monotone increasing then
f(x1) < f(x0) = y0 < f(x2) while if f is monotone decreasingf(x1) > f(x0) =
y0 > f(x2). Either way we have pointsf(x1), f(x2) ∈ J = f(I) on either side
of y0 andy0 can’t be an endpoint ofJ .

To prove the result about(f−1)′(y0) for y0 ∈ J fixed, consider the definition
of the derivative in the form

(f−1)′(y0) = lim
k→0

f−1(y0 + k)− f−1(y0)

k

(where we usek instead of the usualh because we want to keeph for later). To
prove that this limit exists and is what it is claimed to be whenf ′(f−1(y0)) 6= 0,
we use sequences. Consider a sequence(kn) with kn 6= 0 (for all n), all kn small
enough thaty0 + kn ∈ J and so thatlimn→∞ kn = 0. Write

hn = f−1(y0 + kn)− f−1(y0).
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Takingx0 = f−1(y0), we have

x0 + hn = f−1(y0 + kn)⇒ f(x0 + hn) = y0 + kn = f(x0) + kn

so that
f(x0 + hn)− f(x0) = kn.

By continuity off−1 we can say that

lim
n→∞

hn = lim
n→∞

f−1(y0 + kn)− f−1(y0) = 0.

Becausef(x0 + hn)− f(x0) = kn 6= 0 we must also havehn 6= 0 (all n).
So

f ′(x0) = lim
n→∞

f(x0 + hn)− f(x0)

hn
= lim

n→∞

kn
f−1(y0 + kn)− f−1(y0)

.

If f ′(x0) 6= 0 we are able to take reciprocals and deduce

lim
n→∞

f−1(y0 + kn)− f−1(y0)

kn
=

1

f ′(x0)
.

As this is true for all sequences(kn)∞n=1 with kn 6= 0 andlimn→∞ kn = 0, we have

lim
k→0

f−1(y0 + k)− f−1(y0)

k
=

1

f ′(x0)
.

This proves the theorem in the casef ′(x0) = f ′(f−1(y0)) 6= 0.
To show finally that the derivative(f−1)′(y0) does not exist iff ′(f−1(y0)) = 0

consider the chain rule applied to

f(f−1(y)) = y

If (f−1)′(y0) existed, since we knowf is differentiable, the chain rule would say

f ′(f−1(y0))(f−1)′(y0) = 1

and that leads to the contradiction0 = 1.

Example A.9. If we return to the previous examplef(x) = x3, f−1(y) = y1/3

then we have

(f−1)′(y) =
1

f ′(f−1(y))
=

1

3(f−1(y))2
=

1

3y2/3
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as long asy 6= 0. In other words

d

dy
y1/3 =

1

3y2/3
(y 6= 0)

but the derivative does not exist aty = 0.
Considering the cube root function in its own right (rather than as the inverse

of the cube function) we would normally usex for the independent variable and
write sayg(x) = x1/3. Our formula is

g′(x) =
d

dx
x1/3 =

1

3x2/3
(x 6= 0)

(andg is not differentiable at 0).
We don’t have to stop with cube roots. The same argument (more or less)

applies to any odd root (inverse ofx 7→ x5 is x 7→ x1/5, for example) and we get

d

dx
x1/n =

1

nx(n−1)/n
(x 6= 0)

for n odd.
For the case ofn even we have(−x)n = xn and sox 7→ xn is not injective on

R. We can however restrict tox > 0 and get a bijectionf : (0,∞)→ (0,∞) with
f(x) = xn and inversef−1(x) = x1/n. Sincef ′(x) = nxn−1 6= 0 for x > 0 we
can see from the theorem that

(f−1)′(y) =
1

f ′(f−1(y))
=

1

n(f−1(y))n−1
=

1

ny(n−1)/n
(y > 0)

We have (without being as careful as usual) made a definition in the middle
of all this. We have definedx1/n for all x ∈ R if n ∈ N is odd, and forx > 0 if
n ∈ N is odd. Here is how we defined them. And then we can go on to define any
rational power (at least of positive numbers).

Definition A.10. (i) For n ∈ N odd, we define the functionx 7→ x1/n:R → R

(called thenth root function) to be the inverse of the functionx 7→ xn:R→
R.

(ii) For n ∈ N even, we define the functionx 7→ x1/n: [0,∞)→ [0,∞) to be the
inverse of the functionx 7→ xn: [0,∞)→ [0,∞).
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(iii) For m ∈ Z \ {0} relatively prime ton ∈ N we define

xm/n = (x1/n)m

(for all x ∈ R if n odd andm > 0, and forx > 0 otherwise.)

In case it was not clearx−m = 1/xm andx = x1, x2 = xx are defined by
induction (xm+1 = xxm). We can definex0 = 1 as long asx 6= 0, but 00 is best
left undefined.

One can check that with this definition the law of exponents work. So ifp, q ∈
Q we can sayxp+q = xpxq and(xp)q = xpq as long as we avoid dividing by 0 and
even roots of negative numbers.

Proposition A.11. For x > 0 andp ∈ Q \ {0},

d

dx
xp = pxp−1.

The same is true forx < 0 if p = m/n with n odd.

Proof. We can use the chain rule onh: (0,∞)→ (0,∞) given byh(x) = xm/n =
(x1/n)m) to get

h′(x) = m(x1/n)m−1 d

dx
(x1/n) = nx(m−1)/n 1

nx(n−1)/n
=

n

m
xn/m−1

TO BE proof-read. April 15, 2005
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