Chapter 4: Continuous functions (121 2004-05)

While we have introduced continuous functions in the last chapter (functions
that are continuous at each point of their domain), we have basically dealt with
properties of continuity at single points. We now go on to deal with properties that
are harder to prove and are more significant. They are ‘global’ properties, meaning
that they depend on knowing that the function is continuous at each point of its
domain, but they also depend in an important way on properties of the domain
(usually an interval or a finite closed interval in these theorems).

The theorems are true because of a combination of properties of continuity
and the interval.

Definition 4.1. A subsetS C R is called (sequentiallyyjompacif each sequence
(zn)5%, In S has a subsequence,,; )52, which converges to a limitm; .. z,,; €
S (in the setS).

Note that this is a property that considatspossible sequences of terms in
S. The reason to mention theequentiallyis that there is a more abstract way
of defining compactness which applies in more abstract settings. However, this
definition is equivalent in the setting we are in of subset® .of

Theorem 4.2 (Heine—Borel).Finite closed intervalsga, b) C R are compact sets.

Proof. Consider any sequen¢e, ), in [a, ].

Being a bounded sequence, by the Bolzano-Weierstrass Theorem (2.19) there
is a subsequende,, )32, which converges to a limit € R. We claim that/ €
[a, b].

Ifnot¢ < aorf>b.

If £ < a we can arrive at a contradiction as follows. Take (a — ¢)/2 in the
e-N definition oflim; ., z,,, = £. We can find/ so thatjz,,, — (| < eforj > J,
Buta < x, foralln, so|z,, —{| =z, —{>a—{= % > e sothatj = J
cannot satisfyr,, — (| < . This is a contradiction.

We can similarly rule out > b by takinge = (¢ —b)/2 (if ¢ > b) and showing
that noj satisfiegz,, — /| < e. O

(Because of the way this theorem follows from the Bolzano-Weierstrass the-
orem without any really hard work, people sometimes consider them as more or
less the same theorem. There is this additional aspect of the limit being in the
set. Indeed the set does not come into the Bolzano-Weierstrass, as that is about a
bounded sequence.)
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Definition 4.3. If f: S — R is a real-valued function (on any s#Y, thenf is
calledbounded abov# its range f(S) C R is bounded above. In other words,
is bounded above if there exists a numbérc R so thatf(z) < M forall z € S.
Similarly f is calledbounded belowf there existsl, € R so thatl, < f(x)
holds for allz € S (or, equivalently, iff (S) is bounded below).
A function f: S — R is called boundedif it is both bounded above and
bounded below.

Theorem 4.4.1f f:[a, b] — R is a continuous function on a finite closed intervals
la,b] C Rthenf is bounded.

Proof. If fis not bounded, then it is not true for anyc N that—n < f(z) <n
forall z € [a,0]. (If —n < f(x) < nforall z € [a,b], thenf is bounded above
by n and below by—n.) In other words it is not the case thd{z)| < n holds for
all z € [a, b] and so there must be at least anec [a, b] with | f(x,,)| > n. Chose
one suchr,, for eachn € N and we now have a sequengs, )5, in [a, b].

By Theoreny 4]2, there is a subsequeficg )32, which converges to a limit
0 € [a,b].

Now f is continuous at € [a, b] and(x,, )2, is a sequence ifa, b| converging
to (. Solim; .. f(z,,) = f(¢) and, as a convergent sequenGg(z,,)) _, must
be a bounded sequence (see the proof of Theorem 2.9 (iii) for a proof of this). But
we have|f(x,,)| > n; > j for all j and this is incompatible with the sequence
being bounded. (IL, M € R satisfyL < f(z,,) < M for all j, then|f(z,,)| <
max(|L|, |M]) for all j and this would implyj < max(|L|, |M]) forall j € N—
impossible adN is not bounded above.) O

Example 4.5. There are simple examples that show that the result is false if the
interval is not closed or if there is even one point in the interval where the function
fails to be continuous.

For examplef: (0, 1] — R given byf(x) = 1/z is not bounded above, though
it is continuous. [Not bounded above becay$é/n) = n, so thatN C f((0, 1]),
andN not bounded above.]

We can make a discontinuous example by consideriftg 1] — R with

B 0 ifz=0
9(”“")_{ 1z ifz#0

Another example ié: [0,00) — R, h(x) = —z which is continuous but not
bounded (below). The domajf, o) is considered a closed interval because it
includes its only finite endpoint 0.
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Theorem 4.6.Let f: [a,b] — R be a continuous function on a finite closed inter-
val [a, b] wherea < b. Thenf has a largest value and a smallest value.

That is there exist, x); € [a,b] so thatf(zy) < f(x) < f(z) holds for
all z € [a,b].

Proof. We use Theorein 4.4. To start with, we prove that there is same [a, b]
with f(z) < f(zy) forall z € [a, b].

The rangef([a,b]) is @ nonempty seta( € [a,b] = f(a) € f([a,b]) for
example) and by Theorem #.4 it is bounded above. By the least upper bound
principle, there is a least upper boutide R for f([a,b]). So f(x) < U for all
x € |[a, b] (and no number iR strictly smaller thal/ has this property). We want
to find x,, so thatf(xz,,) = U. If no suchz,, exist thenf(x) < U holds for all
x € [a, b] and we can define a continuous functipria, b] — R by

1
- U= f(2)

(because the denominator is never 0, this makes sense foedlt, b] and defines
a continuous function). Applying Theordmi.4daeve find there is som&, € R
with g(x) < Uy for all x € [a,b]. Then, agj(x) > 0 (reason:f(z) < U) we have
1/g(z) =U — f(x) > 1/U, and so

g9(z)

forall z € [a,b]. AsUy > g(a) > 0 we haveU — 1/U, an upper bound fof
strictly smaller than the least upper bourid— a contradiction.

Hencex,, € [a,b] with f(z,,) = U must exist.

For the existence of;, we could repeat a similar argument using the greatest
lower bound, or we can apply what we have just proved to the continuous function
h:[a,b] — R given byh(z) = —f(z). If z;, € [a,b] is such thati(z) < h(zr)
forall z € [a,b], thenf(x) > f(z) for all z. O

Theorem 4.7 (Intermediate Value Theorem).Let f: [a, b] — R be a continuous
function on a finite closed interval witfi(a) < 0 < f(b). Then there is some
c € (a,b) with f(c) = 0.

(This theorem is the one that makes the word ‘continuous’ especially con-
vincing. In graphical terms it says that the graph of a continuous function on an
interval cannot jump from being negative to positive without being actually O at
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some place. If you imagine drawing a graph of a function starting-ate and a
negative value of;, ending atr = b with a positive value of;, and if you don’t
allow yourself to lift your pen in between, you will be fairly convinced that the
graph has to cross the axys= 0.

However, that is not a proof. To convince yourself that the result is not obvi-
ous, imagine that we only had rational numbers instead of all the real numbers.
Then the functionf(z) = 2> —2on[0,2] NQ startsoutay = f(0) = -2 < 0
and ends up aj = f(2) = 2 > 0 but (as there is n@/2 in Q) is never 0. Thus
the Intermediate Value Theorem is actually a result of continuity plus the fact that
there are no holes in the real axis (no numbers left out that ‘should’ be there, or
no points on the line that do not correspond to a real number).

Proof. LetS = {t € [a,b] : f(x) < Oforall z € [a,t]}. Notice thatz € S and so
S # (). Being bounded above iy S must have a least upper bouadWe claim
thata < ¢ < b and thatf(c) = 0.

To help with the proof we divide part of it out as a lemma, and then we will
return to the proof. O

Lemma 4.8. Let f: S — R be a function on a set C R that is continuous at a
pointz, € S and that satisfieg(z,) > 0. Then there is @ > 0 so that

reS |x—xy <d= f(zx)>0.

Proof. If f(zp) > 0thene = f(z9)/2 > 0 and we can use the definition of
continuity of f atx, to findy > 0 so that

r €S |r—x| <= |f(x)— flzo)| <e.

Butif | f(x)— f(z0)| < &, then it follows thatf (z) — f(z¢) > —e = — f(x0)/2 =
f(z) > f(x9)/2 > 0. Hence, for thigy > 0 we have

x €S |z —xo| <= f(x) > 0.
U

Lemma 4.9. Let f: S — R be a function on a set C R that is continuous at a
pointz, € S and that satisfieg(z,) < 0. Then there is @ > 0 so that

reS |r—xy <d= f(x) <0.

Proof. Apply Lemma[4.B to- f(z). O
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Proof. (of Theoren{4]7 continued)

First note thatf(a) < 0 and so by Lemma 4.9 there és> 0 so thatz €
[a,b], |z —a| < 6 = f(x) < 0. As f(b) > 0, we must have < b — a. Also
a<zr<a+d=uz€ab,|r—a <i= f(zr)<0.Hencea <z <a-+0=
f(t) <0forallt € [a,z]. Thus[a,a + J) C S.

Hencec = lub(S) > a+ 6§ > a.

Also f(b) > 0 and so by Lemmp 4.8 thereds > 0 so thatr € [a, b], |zt —b| <
do = f(z) > 0. Sincef(a) < 0 we must havéy < b — a. Also,b — dy < = <
b=z € [a,b],|lr—b] <= f(zr) >0=a¢S. ThusS C [a,b — d] and
c <b— 0y < b. Hence we have € (a,b).

Finally, we claim thatf(c) = 0. If not eitherf(c) > 0 or f(c) < 0.

If f(c) > 0we canapply Lemm@g4.8to find > 0 sothatr € [a,b], |x—¢| <
41 = f(z) > 0. Butthend; > ¢ — a sincef(a) < 0 and we have — §; < x <
c =z € ab),|lr—c <d = flz) >0=2¢S. AsS C [a,c|] (because
c = lub(S) andS C [a.b]) we must haves C [a,c — 6;] andc — 4, is an upper
bound forS strictly less than the least upper bound. This contradiction rules out
f(e) > 0.

If, on the other handf(c) < 0, then we can apply Lemmnja 4.9 to fiagd > 0
so thatr € [a,b],|z — ¢| < d2 = f(z) < 0. Sincef(b) > 0 we must have
c+ (52 S b.

Asc—dy < ¢ = lub(S), c — d, cannot be an upper bound fSrand so there is
t € Switht > ¢ — 0. Certainlyt < ¢ and sot € (¢ — s, ¢|. Considere + d,/2.
We know f(x) < 0 for all x € [a, t] (sincet € S) and also for all: € [t, ¢+ d2/2]
because: € [t,c+ /2] = x € [a,b] and|x — ¢| < d,. Putting these together we
havef(z) < Oforallx € [a,t]U[t,c+ /2] = [a,c+ /2] and soc+ 52 /2 € S.
Butc+ d2/2 > ¢ = lub(S) is then a contradiction.

These leaveg(c) = 0 as the only possibility. O

Example 4.10.There is a positive numbere R with 22 = 3.

Considerf:[1,2] — R given by f(z) = 22 — 3. We havef(1) = -2 < 0 <
1 = f(2) and also thaf is continuous off0, 1]. (In factz — z? — 3 is continuous
on R since it is a polynomial and thefiis the restriction of the polynomial to
[1,2], hence continuous.)

By the Intermediate Value Theorem, therecis (1, 2) with f(x) = 0, that is
2?2 -3 =0.

(You might like to compare this with the proof in 1.19 that there is a number
V2 € R. Of course we have a lot more theory involved now, but the proof is
almost effortless now.)
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Corollary 4.11 (Intermediate Value Theorem, marginally improved). Let f: [a, b] —
R be a continuous function on a finite closed interval, anditiete R with
f(a) < yo < f(b). Then there is somee (a,b) with f(c) = yo.

Proof. Apply Theoreni 4]7 to the functiog [a, b] — R whereg(x) = f(x) — yo.
We haveg(a) < 0 < g(b). If g(c) = 0thenf(c) = yo. O

Corollary 4.12 (Intermediate Value Theorem, slight variation). Let f: [a, b] —
R be a continuous function on a finite closed interval, andjdet R with f(a) >
Yo > f(b). Then there is somee (a,b) with f(c) = yo.

Proof. Apply Corollary[4.11 to the function: [a,b] — R whereg(z) = —f(z).
We haveg(a) < —yo < g(b). If g(c) = —yo thenf(c) = yo. O

Proposition 4.13. A subsetS C R is an interval if and only if it has the following
“between-ness” property:

If o, B € Switha < 3, then|o, 5] C S

Proof. = Itis easy to see that every interval (see 3.2) has this property.

«<: AssumeS C R is a subset with the “between-ness” property above. If
S =0, theS = (a,a) foranya € R. SoS'is an interval. IfS = {a} has just one
point, thenS = [a, a] is also an interval.

From now on we assume th&thas more than one point. The proof is based
on considering several cases about whethes bounded above or not, bounded
below or not.

First assumes' is both bounded above and bounded below. d_et glb(sS),

b = lub(S). They exist since&' is not empty. We must have < b since ifa = b
thenS C [a,a] could only have one point. We claim that, b)) C S. To show
this, letx € (a,b). Thenz < b = lub(S) = 2 not an upper bound fof =
there isg € S with = < . Also, z > a = glb(S) = z not a lower bound for
S = thereisa € S with z > o. Nowa < z < ( and so by the “between-ness”
property ofS we haver € [a, 5] C S. Since this is true about eache (a,b)
we have(a,b) C S. Also, from the definitions ofi andb, S C [a, b]. This leaves
4 possibilities forS, [a,b], [a,b), (a,b] and(a,b) depending on whether € S
and/orb € S.

Next consider the case whefeis bounded above but not below. Rut=
lub(S). We claim thatf —oco, b) C S C (—o0, b]. The proof is essentially identical
the the argument we have just given. We then have two possibifitie — oo, b
andS = (—oo, b) depending on whethérc S or not.
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If S'is bounded below but not above, put= glb(S) and then a similar argu-
ment showsS = [a, 00) or S = (a, 00).

Finally if S is not bounded above and not bounded below, we can show that
R C S (becauser € S = x is neither an upper bound not a lower bound for
S = there are3, a € S with x < gandz > o« — hencer € [«, 5] C S by the
“between-ness” property df.

In all cases, we end up witkl being an interval. O

Theorem 4.14.1f I C R is an interval andf: I — R is a continuous function,
then the rangef (1) is an interval.

Proof. According to Propositio 4.13, it is sufficient to show thdt’) has the
“between-ness” property.

Let o, 5 € f(I) with « < (. Then there must be,b € S with f(a) = «
and f(b) = . To show(«, 3) C f(I), takeyy € («,3). Then there are two
situations.

a < b: Then we havef(a) = a < yo < = f(b) and we can apply
Corollary[4.11 to get € (a,b) C I with f(c) = yo. Hencey, € f(I).

a > b: Then we havef(b) = 6 > yo > a = f(a) and we can apply
Corollary[4.1P on the intervab, a] to getc € (b,a) C I with f(c¢) = y,. Hence

Yo € f(I).

Thus, we have showfw, 5) C f(I). Sincea, 5 € f(I), we havea, 5] C
f().

This establishes thgt(7) has the “between-ness” property. O

(In an abstract sense, this theorem is another incarnation of the Intermediate
Value Theorem.)

We now apply some of the results to the situatiopofynomials A polyno-
mial is a a finite sunp(z) = a + 0 + a1z + -~ + az2” = Y77 a2’ for some
constants;; € R (0 < 5 < n). If a, # 0 we say that: is the degreeof the
polynomial, while ifa,, = 0, we can rewrite the sum without any term.

Sometimes the terrmmonic polynomials used for polynomialg(z) = =™ +
Z;:& a;z’ where the coefficient of" is 1. Most questions about polynomial
equation®(z) = 0 can be reduced to questions whe(e) is monic (by dividing
across by, if a,, # 1, with n the degree)

Proposition 4.15.1If p(z) = E;;O a;z/ is a polynomial of degree, then there is
R > 0 so that

1
|p($) - anxn| < i‘anxn’
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holds for allz with |z| > R.

(In other words forx| large, the highest term, =™ dominates all the others.)

Proof. Itis enough to prove the result fpfx) monic (as can be seen by dividing
p(z) by a,.
Assuminga,, = 1, take R = max (1, 2 Z;:Ol \aj|). Then we have

n—1
p(r) —a" = a;a’

J=0

and for|xz| > R. Thus
n—1 n—1
(@) = 2" < Y lallal <) laylla]""!
j=0 j=0

using the triangle inequality first and then the observatign> 1 = |z]/ <
|z’ 1. Thus we have

n—1
p(z) —2"| < <Z !%I) 2" < (R)2)]a" 7 < (|2l /22" = |2 /2.
§=0
[
Proposition 4.16. Any odd degree polynomial equati@j?:0 a;jxd =0, or
ao + a1 + asz® 4+ - + apz" =0,

(with » odd anda,, # 0) has a solution: € R.
Proof. Fix an odd degree polynomial equatignz) = Z?:o a;x’ = 0. Dividing
by a,, it is enough to how that in the casg = 1 (monic polynomial case) the

equation has a solution. So taker) = >""~) a2’ + 2"
By Propositior{4.15, we can find so that

1
o] > R = Ip(a) = 27| < Sal"
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This means that, for = R + 1 we have
1
p(R+1)— (R+1)" < §(R+ "

= (R+1)" (R+1)"<p(R+1) < (R+1)"+%(R+1)"

1
)
or
%@+D"<MR+D<§@+D”

In particularp(R + 1) > 0.
Taking nowz = —(R + 1) we get

p(~(R+ 1))~ (~(R+ 1) < 5| (R+1)"
and sincen is odd this means
p(~(R+ 1)+ (R+1)] < S(R+1)"

= —(R+1)" (R+1)"<p(—(R+1)) < —(R+1)”+%(R+1)”

1
2
and from this we conclude that—(R + 1)) < —3(R+1)" < 0.
Now we can apply the Intermediate Value Theorém](4.7) to the continuous
function p(x) on the interval—(R + 1), R + 1] to conclude that there is some
r e (—(R+1),R+ 1) with p(x) = 0. O

Note: A lot of mathematics has arisen from the desire to understand how to
solve equations. Here we have quite a general results about equations. It implies
that every odd degree polynomiglz) with real numbers as coefficients can be
factored, if you use the remainder theorem. The remainder theorem tells you that
if a polynomialp(z) hasp(c) = 0 the the polynomiak — ¢ of degree 1 divides
p(z).

Corollary 4.17. If p(x) is an odd degree polynomial, then the functipi® — R
given by the polynomial is surjective.

Proof. If yo € R, then the equatiop(z) = y, can be rewritterp(z) — yo = 0

and so it is an odd degree polynomial to which the previous result applies. So
there isx € R with p(x) — yo = 0 or p(z) = yo. This shows that the function is
surjective. O
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Proposition 4.18. For any even degree polynomiglz) = Z?:o a;jx? = 0 with
leading coefficient,, > 0 (n even), there i, € R so that

n

pler) =Y ajz], <3 aj’ = p(x)

j=0 J=0
holds for allz € R.

(In other words even degree polynomials with positive leading term have a
smallest value. It follows that those with even degree polynomials with a negative
leading term have a largest value.)

Proof. By Propositiof Z.15 (and using, > 0), we can findR so that
1
|z] > R = |p(z) — apz"| < §an|x|".

As n is even, we can simplify this a little becaus¢” = z".
It implies that, for|z| = R + 1 we have

1
p(E+1) —an(B+1)" < gau(R+1)"
1 3
= éan(R + )" <p(R+1) < 5an(R+ 1)".

Also for |z| > 2(R + 1)

1
pla) 2" < 5"
1 n
= 3% < p(z)

1
= 5(2(]% +1)"=2(R+1)" < p(z)
= p(R+1) < p(x).
It follows that if we are looking for a smallest value, then mavith |z| >
2(R+1) could provide it. We should concentrate on looking thenifer [—2( R+
1),2(R + 1)]. But now we have a continuous functi@fz) on a finite closed

interval [a,b] = [-2(R + 1),2(R + 1)] and Theoren 4|6 assures us that there is
xp € [-2(R+1),2(R + 1)] with

p(xr) <p(z)forallz € [-2(R+1),2(R+ 1)].
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In particularp(z,) < p(R + 1) and sop(z) < p(x) holds for allz with |z| >
2(R+1) (recallp(R + 1) < p(x) for thosex).
So now we have
p(zr) < p(z) forall x € R.

O

An example of the Proposition would bér) = 2(z —1)> —5 = 22% — 42— 3
which hasp(1) = —5 < 2(x — 1) — 5 = p(z) for all z. In terms of equations, it
means we cannot sol&? — 4z — 3 = y if yo < —5.

The Proposition does not imply it, but we can sol€& — 42 — 3 = y, for
all yo > —5. To prove that we could use that the largest teza¥ (n this case)
dominates fofz| large, and s@z? — 4z — 3 > $(22%) = ? for |z| large enough.
This means that there is somavith 222 — 42 — 3 > vy, (any fixedy, we choose).
From this we can establish that the interydR) which is the range op(z) =
2% — 4z — 3 must be[—5, o) in this case.

In fact for a general even degree polynomiét) with positive leading term
the range(R) = [p(x), o0) as long as the degree is not 0 (constant polynomial).
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A Appendix — April

Theorem A.1. If I C R is an interval andf: I — R is a continuous injective
function, thenf must be strictly monotone.

The proof of this result is more technical than difficult, as the main point is
that the intermediate value theorem holds.

As an example to indicate the importance of the domain being an interval,
consider the functiotf: S — R whereS = [0, 1]U[2, 3] andf is given by the rule

z ifxel0,1]
f(‘”):{ 5—a ifzel23

Itis fairly easy to see thatis injective with f(S) = [0, 1]U[2, 3] but f is monotone
increasing on0, 1], monotone decreasing ¢ 3] and not monotone oA.

Our proof of the theorem will be broken down into small steps, via the follow-
ing lemmas.

Lemma A.2. Supposd C R is an interval,f: I — R is a continuous injective
function,a,b € I,a < band f(a) < f(b).
Then/([a,b]) = [f(a), f(b)].

Proof. We know thatf([a, b)) is an interval and sd([a, b]) 2 [f(a), f(b)].

To show it is equal, suppose therejise f([a,b]) \ [f(a), f(D)]. Theny, =
f(z0) for somez, € (a,b) and eithery, > f(b) oryo < f(a).

If yo > f(b), thenf([a,zo]) C [f(a), f(xo)] and containsf(b). So there is
r1 € (a,x9) With f(z1) = f(b) — contradicting injectivity off (asxz; # b,
x1,b € I).

1 If yo < f(a), thenf(]xo,b]) C [f(xo), f(b)] and containsf(a). So there is
xr1 € (wo,b) With f(x1) = f(a) — contradicting injectivity off (asz; # a,
x1,a € 1).

1 As both are ruled out, we must hay€la, b)) = [f(a), f(b)]. O

Lemma A.3. Supposd C R is an interval,f: I — R is a continuous injective
function,a,b € I,a < band f(a) < f(b).
Then

() ael,a<a= f(a) < f(a), and

(i) Bel,B>b= f(B)> fb)
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Proof. To prove (i), note first from Lemmp A.2 th&t([a, b]) = [f(a), f(b)] and
S0, sincef is injective we havef(a) ¢ [f(a), f(b)]. Thus eitherf(a) < f(a) as
desired orf(«) > f(b). Butif f(a) > f(b), thenf(a) > f(b) > f(a) and so,
by the Intermediate Value Theorem, therecise (o, a) with f(x¢) = f(b) —

contradicting injectivity off (asxy # b). So we must havé(a) < f(a).

To prove (ii), we similarly deduce from Lemnha A.2 th&ts) ¢ [f(a), f(D)].
To rule outf(3) < f(a) we show that this situation would result fita) = f(x)
for somezx € (b, 3). O

Lemma A.4. Supposd C R is an interval,f: I — R is a continuous injective
function,a,b € I,a < band f(a) > f(b).
Then

(i) ael,a<a= f(a) > f(a), and

(i) spel,p>b= f(B)<f(b).

Proof. Apply Lemma[A:B tog: I — R given byg(x) = — f(x). Theng is injec-
tive andg(a) < g(b). O

Lemma A.5. Supposd C Ris aninterval,f: I — R is a continuous injective
function,a,b € I, a < band f(a) < f(b).
Thenf is strictly monotone increasing (af).

Proof. The complete proof is rather detailed, but more tedious than difficult. The
hardest parts are done already.

We consider, § € I with o < 5 and we claim thaf(a) < f() must hold.
(When we establish the claim we will have shown tlfaits strictly monotone
increasing, since, 5 € [ are quite arbitrary witlwx < (3.)

The proof is divided into several cases, depending on whegelie with re-
spect tau, b.

Case 1l:a < a.

subcase 1A:a < 3 < a.
In this situation, sincef(a) # f(8) (by injectivity) we either have
f(a) < £(8) (as we claim) orf () > f(8).
If f(a) > f(B) then Lemmg_Al4 (ii) (usingv and 3 where @’ and
‘b’ occur in the Lemma), implieg(3) > f(b) and sof (5) > f(b) >
f(a). LemmaA.B (i) tells usf(5) < f(a), a contradiction.
So f(«) < f(5) holds in this situation.
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subcase 1B:a < a < G < b.
By Lemma[A.3 (i), in this cas¢(a) < f(a) while by Lemma AR,
f(B) € f(la,b]) = [f(a), f(b)] @and sof(a) < f(a) < f(B) =
fla) < f(B).

subcase 1C.a <a < b < (3.

By Lemma[A.3B (i) and (ii), in this casé(«) < f(a) andf(b) < f(5).
Sincef(a) < f(b) we deducef(a) < f(3).

Case2:a < a<h.

subcase 2A:a < a < 3 <b.
Asin case 1A, what we have to excludefigy) > f(53) (sincef(a) #
f(B) by injectivity of f). Butif f(«) > f(5) then by Lemmd Al4
(i) and (ii) (usinga and 3 where @’ and ‘b’ occur in the Lemma) ,

fla) = f(e) andf(3) = f(b). So
fla) = fa) > f(B) = f(b) = f(a) > [(b),

a contradiction. We are forced therefore to hg\fe) < f(53), as
claimed.

subcase 2B:a < a < b < £5.
By Lemma[A.2 and Lemmp A.3 (ii), in this situation we haffey)
f(la.b]) = [f(a), f(0)] = f(e) < f(b) and f(b) < f(B). Since
fla) # f(b) by injectivity, f(a) < f(b) < f(B) = f(a) < f(P), as

claimed.

Case3d:a<b<a<p.

Again we must rule ouf () > f(8), but if that happens Lemnja A.4 (i)
(usingar and 3 where @’ and ‘b’ occur in the Lemma) implies that(a) >

f (@) while Lemma[A3B (ii) implies thaif (b) < f(a). Sof(a) < f(a) <
f(b) < f(«), a contradiction.

O

Proof. (of TheorenTAlL)

We first dispose of the case wherenight be empty or a singleton. In these
casesf is vacuously strictly monotone increasing (and decreasing also) because
there are not two values gfto be compared.
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Now, if I has at last two points, pick b € I with a # b and assume we have
labeled them so that < b. Sincef is injective, we knowf(a) # f(b) and so
eitherf(a) < f(b) or elsef(a) > f(b).

If f(a) < f(b), then Lemma& Al5 tells us thditis strictly monotone increasing.

On the other hand if (a) > f(b) we can considey: I — R with g(z) =
—f(x). This g will also be injective and continuous dnandg(a) < g(b). By
the Lemma AJsg must be strictly monotone increasing, and this implies that
is strictly monotone decreasing,(5 € [,a < 5 = g(a) < g(8) = —f(a) <

—f(B) = f(a) > f(B)). O

Theorem A.6. Let I C R be an interval andf: I — R an injective continuous
function. ForJ = f(I) = the range off, we takef~! to mean the inverse of
the bijectionf: I — J (same values ag: I — R but a different co-domain, so
technically a different function). Thefr!: J — I is continuous.

Proof. We know by Theorerfr Al thatis strictly monotone and we give the proof
in the case wher¢ is strictly monotone increasing. The other case (decreasing) is
similar or can be deduced by considerifig) = — f(z) (andg~'(y) = f~'(—v)).

We know that/ = f(I) is an interval (corollary to the Intermediate Value
Theorem).

Fix yo € J ande > 0. We aim to verify that there i8 > 0 satisfying the
implication

yeJly—yol <d=[fy) = w)l <e

This will establish continuity of ~! aty, (and sincey, € J is arbitrary, continuity
of f~1 onJ).

Letxzo = f~*(yo). There are a few different cases to consider, depending on
whether or noty + ¢ € I andzy — ¢ € 1.

If bothzg +e € T andzy — e € I, puty, = f(xo — ) andyr = f(zo + €).
Taked = min(yr — vo, Y0 — yr). Sincef is strictly monotone increasing, =
f(zo) < flxo+¢) =ygpandy, = f(zg —¢) < f(xo) = yo and sa > 0. Also

ly—wol <0 = y—-0<y<yp+9
= Yy <y<yYr
= yeJandf ' (y) < [ (y) < f ' (yr)

(The last step is justified becauge! must actually be strictly monotone in-
creasing as well ag. For example iff~!(y.) > f~'(y) then f(f~1(yr)) >
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f(f~Yy)) = yr >y, which is false.) Now we have

ly—wol <6 = wo—e=f""(y) <f ' y) <[ '(yr) =wo+e
= |f ' y) —wxol <e

and this is what we require because= f~'(y).

Another extreme is the case when bothi- ¢ ¢ I andzy — e ¢ 1. Thenl C
(zg—e,x9+¢) and every € J satisfie§ f~!(y) —xzo| = |/~ (y) — f (o) < &.
Thus for anyd > 0 positive (says = 1 for the sake of being specific), we have

yely—yol <d= ") —fw)l <e.

There are two other casesadf+¢ ¢ I butzg—e € I, then/ C (—oo, zo+¢).
Takey, = f(xg —¢) andd = yo — yr. Then

yeJly—wol<dé = yely>u
= [THy) > y) = w0 —¢
= zo—e< fHy) <zo+e
(sincef(y) € I)
= [/ y) - o)l <e.

In the final casery +¢ € I butzy—e ¢ I. Inthis casd C (zy—e¢,00). Take
yr = f(zo+¢) andd = ygr — yo. Then

yeJLly—wl<d = yey<uyr
= [ y) < f ' yr) =m0 +¢
= po—e< fHy) <zo+e
(sincef(y) € I)
= [Ty = fHwo)| <e

O

Example A.7. If f:R — Ris f(z) = 23, thenf is a bijection andf~:: R — R
is given by f(z) = 2'/3 (cube root ofr). By the theorenmy ! is continuous.

Notice that sincef(R) is an interval and containg® > n and—n? < —n for
eachn € N we can see thaf(R) = R.
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Theorem A.8. Let/ C R be an open interval (finite or infinite) and I¢gt / — R
be a differentiable injective function. Take= f(/). ThenJ is also an open
interval and the inverse functiofr*: J — I is differentiable at a poing, € J if

and only if f'(f " (o)) # 0.
Moreover

whenf'(f~(y0)) # 0.

Notice that a way to remember the result is to use Leibniz notagien f(z)
forrel,ye J,z=f"(y) andj—g = f’(x). Then the theorem says

dx 1

dy @

with the added explanation thdt /dy is normally evaluated at a poiptwhile
the dy/dx on the other side is evaluated a pointelated toy by y = f(x) or

= f"(y).

Proof. As differentiable functions are continuoug,most be strictly monotone
by Theorem{ AJl. We know thal = f(I) is an interval and/ has to be an
open interval sincd is. The reason is that if contained any endpoinj, of
itself, thenzy = f~!(yo) € I and cannot be an endpoint bbecausd is open.
So we can findey, o € I with ;7 < xg < z9. If f IS monotone increasing then
f(x1) < f(xo) = yo < f(x2) whileif f is monotone decreasintz,) > f(zo) =
yo > f(x2). Either way we have points(z,), f(z2) € J = f(I) on either side
of 1, andy, can’t be an endpoint of.

To prove the result aboutf ~!)’(yo) for y, € J fixed, consider the definition
of the derivative in the form

(FYY () = lim o+ K) = I 30)

k—0 k

(where we usé: instead of the usual because we want to keépfor later). To
prove that this limit exists and is what it is claimed to be whéfy —!(yo)) # 0,
we use sequences. Consider a sequéhgcewith k,, # 0 (for all n), all k&, small
enough that, + &, € J and so thatim,, ., k, = 0. Write

h = f (Yo + kn) — £ (o)
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Takingzo = f~'(yo), we have
x0+hn:f71(y0+k'n> :>f($0+hn>:y0+kn:f(‘r0)+kn

so that
fzo + hn) — f(xo) = ky.
By continuity of f~! we can say that

lim h, = lim f~Y(yo + kn) — f*(y0) = 0.

n—oo

Becausef (zg + hy,) — f(x¢) = k, # 0 we must also have,, # 0 (all n).
So

/ 1 f($o+hn)—f($0>_ : kn
fw) = ”hg’lo hn, N "ILH;O F o + kn) — f~1yo)

If f’(z0) # 0 we are able to take reciprocals and deduce

Mot k) = o) 1
Jim. K = Flzo)

As this is true for all sequencés,, )>2 ; with k,, # 0 andlim,, ., k,, = 0, we have

Mo+ k)= fM ) 1
llcli»r(l) k o)

This proves the theorem in the cagér) = f'(f (o)) # 0.
To show finally that the derivativef ~')'(y,) does not existiff’(f ! (yo)) = 0
consider the chain rule applied to

FU W) =y

If (f~1)(yo) existed, since we knov is differentiable, the chain rule would say

P o)) (£ (wo) =1

and that leads to the contradiction= 1. O

Example A.9. If we return to the previous exampz) = z°, f~'(y) = y'/3
then we have

1 I
PO ) 3(F M y))? 3y?/3
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as long ag # 0. In other words

d 1/3 1

oy = 0
o' T3 W70

but the derivative does not existgat= 0.

Considering the cube root function in its own right (rather than as the inverse
of the cube function) we would normally usefor the independent variable and
write sayg(z) = z'/3. Our formula is

d 1
/ _ 7 1/3
g(w) = do. T 35203 (z#0)
(andyg is not differentiable at 0).
We don’t have to stop with cube roots. The same argument (more or less)
applies to any odd root (inverse of— z° is « — /%, for example) and we get

d Un _ 1
@’ T e @70

for n odd.

For the case ofi even we havé—x)" = 2™ and sar — ™ is not injective on
R. We can however restrict to > 0 and get a bijectiorf: (0, cc) — (0, c0) with
f(z) = 2™ and inversef ~!(z) = x*/™. Sincef'(xr) = na""' # 0 forz > 0 we
can see from the theorem that

v B 1 B 1 B 1
VW= im0 = amey  weon W70

We have (without being as careful as usual) made a definition in the middle
of all this. We have defined'/” for all 2 € R if n € Nis odd, and forz > 0 if
n € Nis odd. Here is how we defined them. And then we can go on to define any
rational power (at least of positive numbers).

Definition A.10. (i) For n € N odd, we define the function— z'/":R — R
(called thenth root function) to be the inverse of the functior- 2™ R —
R.

(i) Forn € N even, we define the function— z'/": [0, 00) — [0, o) to be the
inverse of the functiom — 2": [0, 00) — [0, 00).
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(iiiy Form € Z \ {0} relatively prime ton € N we define

xm/n — (:L,l/n)m

(forall z € R if n odd andm > 0, and forz > 0 otherwise.)

In case it was not clear ™ = 1/2™ andz = z!, 22 = xz are defined by
induction ™! = z2™). We can define® = 1 as long ast # 0, but(° is best
left undefined.

One can check that with this definition the law of exponents work. pojif
Q we can say?™? = zPz? and(zF)? = 2P as long as we avoid dividing by 0 and
even roots of negative numbers.

Proposition A.11. For z > 0 andp € Q \ {0},

— P = p:Ep—l'

dx

The same is true for < 0 if p = m/n with » odd.

Proof. We can use the chain rule én(0, co) — (0, o0) given byh(z) = 2™/ =
(z'/™)™) to get

d
/ _ 1/nym—1 1/ny (m—1)/n — n/m—1
B (xz) =m(z/™) e (/") =nx syl

TO BE proof-read. April 15, 2005
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