Chapter 3: Limits of functions (121 2004-05)

Remarks 3.1. We move on now to start to deal with functions and most of the re-
mainder of the course will be about functions. We will first discuss limits of func-
tionslim, ., f(x), keeping in the back of our minds that we will define derivatives
later via f'(a) = limy,_o w

We did already define functions in 2.1 and more terminology about functions
(for example: injective [or ‘one-one’], surjective [or onto], bijective, inverse func-
tion) is part of course 111. Functions are used in essentially all parts of mathe-
matics and in course 111 the emphasis is more on algebraic contexts (groups and
mappings between them, for example, or permutations) but we will deal mostly
with functions between sets of numbers and these can be visualised effectively in
a graphical way.

There is a Venn diagram approach to functions, treating sets as rather abstract
blobs with elements indicated or marked as ‘points’ inside. Functfods— B
can be thought of schematically as indicated by arrows starting at pointdhe
domain setd and ending at points = f(a) € B. There has to be exactly one
arrow starting at eacth € A (in this picture off). Graphs are a more satisfactory
picture for functions wherel and B are the real numbei® or subsets oR.

Thegraphof a functionf is a set of ordered pairs

Graph(f) = {(a.b) € Ax B: b= f(a)}

in the cartesian product of and B (a subset; with the property that for each
a € Athereis ab € B so that(a,b) € G but also that if(a,b;) € G and
(a,by) € G thenb, = by). WhenA, B C R, we can picture the graph Graph C
A x B C R xR =R? as a set of points in the plane.

Typically (or in simple cases) this graph is a ‘curve’ in the plane with the
property that each vertical line crosses it at most once.
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y = f(x)

The (vertical) liner = x, crosses the graph (once)if € A = the domain of
f. A horizontal liney = y, crosses the graphif, = f(x) for somez € A, that
is if yo is in therangeof f (which is{f(z) : « € A}). The function is surjective
(or onto) if each horizontal ling = y, with y, € B does cross the graph at least
once. The function is injective exactly when each horizontal line crosses the graph
at most once. [Explanation: If the line= y, crosses the graph more than once
it means that there are at least twp z, € A with f(z1) = f(x2) = yo (and

Ty # T3).]

Intervals 3.2. In many cases we will be dealing with functiohsd — B where
the setsA and B are intervals Here we will review the notation for intervals.

If a,b € R anda < b, then theclosed intervalwith end pointsz andb is the
set of all real numbers betweerandb inclusive of the end points:

[a,b] ={reR:a<zandz <b}={reR:a <z <b}
Theopen intervabetween: andb is
(a,b) ={reR:a<x<b}

There are various infinite intervals (no endpoint on one side or the other) and
we use the notationso and—oc as convenient replacements for the missing end-
points to the right or left. We do not mean to imply that there are any numbers
or —oo.
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Here are the semi-infinite open and closed interval$ € R) and the nota-
tions we use

[a,00) = {xre€eR:a<z}
(a,00) = {reR:a<uz}
(—o0,b] = {xeR:z<b}
(—o0,b) = {reR:xz<b}

Note the convention that round brackets (or parentheses) are used for end points
that are not included in the set. If all (finite) end points are included we refer to
the interval as closed. If no finite intervals are included we call the interval open.
Sola, o) and(—o0, b] are closed, whiléa, co) and(—oco, b) are open. There is
one doubly infinite interval

(—o00,00) =R

and it counts as both open and closed.
There remain two other types of intervals we may encounter once or twice, the
half-open and half-closed intervals (which are neither open nor closed)

[a,b) = {reR:a<z<b}
(a,b) = {reR:a<z<b}

where we restrict ta < b.

Technically we could allows = b in the cas€a, b] but [a,a] = {a} is just
a one-point set and this will either be a very simple case or a case we will not
want to consider in future theorems. The c&se:) is the empty set and we will
probably never want to consider that.

Examples 3.3.For the functionf: R — R with f(z) = z?, the range (set of
values) turns outto b¢y € R : y > 0} = [0,00). We will prove this properly
later. We may sometimes wish to discuses the same functibat concentrate
on a range of values aof like 0 < z < 1 and then we are dealing with a different
functiong: [0, 1] — R given by the same formulgz) = 22

At times we may want to have a surjective version of (essentially the same)
function. Sayh:[0,1] — [0,1] given byh(x) = z%. Technicallyh and g are
different because they have different co-domains but we may have to switch at
times fromg to 4 (and it is not such a huge distinction because the two functions
g andh have identical domains and identical values).
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Another type of example is a function given by a rule jike) = 1/x which
clearly does not make sense for= 0 (when we would be trying to divide [0y.
So the natural thing is to just make that restriction and consiflék \ {0} — R
given byf(z) = 1/x. Here we have strayed outside having the doméiand
co-domainB being intervals.R \ {0} = (—o0,0) U (0,00) is a union of two
intervals.

The set difference notatioh \ B means to take away from any elements of
B which may be irA. S0A\ B = {x € A:z ¢ B}. Forinstanc€0, 2]\ [1,3] =
[0,1) and [0, 1] \ [3,4] = [0,1]. (It makes no difference td to take away all
elements of3 if none of the elements &f were in A to start with.)

Notation 3.4. If a € R, then a puncturedpen interval about means a subset of
R of the form(c, d) \ {a} wherec < a < b.

We can writg(c, d) \ {a} = (¢, a) U (a,d) as a union of two open intervals on
either side ofu.

Definition 3.5. SupposeS C R is a subsetf: S — R is a real-valued function
on S, a € S and suppose that contains a punctured open interval abautLet
¢ € R be a number. Then we say thfas a limit of f asx approaches: and write

lim f(z) =4

r—a

if the following holds:

for each sequencer,,)2> , in S\ {a} with lim,, ..z, = a itis true
thatlim,, .. f(x,) = ¢.

Remark. Limits are unique (if they exist).

Proof. We already know that a sequence can only have one limit (Proposition
2.7). Therefore as long as there is at least one sequengg , in S\ {a} with
lim, . x, = a, we cannot have two values fbim x — af(x), because then
lim,, . f(x,) would have two values.

It is here that we rely on the fact that the dom&igontains a punctured open
interval about.. Sayb < a < cand(b,c)\{a} C S. Thenz,, = a+(c—a)/(n+1)
is a valid choice of a sequenc¢e,,)> , in S\ {a} with lim,,_,., z,, = a. O

Examples 3.6. (i) lim,_,2? =4
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(ii)

(iii)

Proof. Note thatf(z) = 2> makes sense for alt € R and so we can
treat f as a functionf/:R — R. Then the domaimR certainly contains a
punctured open interval abo@tand we are in a position to contemplate
lim, . f(x) = lim,_» 2%

[Aside. The fact thatf(2) actually makes sense is not relevant and we
will never use that in the course of the proof. While calculatiing, ., 2>
we never usec = 2 at all. (The reason for this is that the kind of lim-
its we will encounter later when dealing with derivatives are of the form
limy, 0 w and the faction there does not make sense if we had
h=0.)]
Now take any sequende,,)>> , in R\ {2} with lim,,_,. z,, = 2. Then we
have

lim xi = lim z,x, = (hm wn) <lim xn>

n—oo n—oo n—oo n—oo

by the theorem on limits of products (of sequences). Thus we get = 4.

Sincelim,, ., 2 = 4 no matter which sequence,,)>° , we take inR \ {2}
with lim,, ., =,, = 2, we have shown thatm,,_., 2> = 4. O

The next two examples will be building blocks for future use.

For anya € R, lim,_., z = a.

Proof. This is really easy to show, because the criterion is self-evidently
true.

We can consider the function to feR — R given by f(z) = = and again
there is no question but that the domain contains a punctured open interval
abouta. (We could write down(a — 1,a + 1) \ {a} if we want to see a
specific punctured open interval, but there are many possible choices.) We
start with any sequende:,, )2, in R\ {a} with lim,, .., z, = a. Then we
have

lim f(z,) = lim z, =a

n—oo n—oo
automatically true.

So we have showhm,_,, x = a. O

For anya € R, and any (constant) € R, lim,_, A = .
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Proof. In this case the function is the constant gite) = \. Start with any
sequencéz,)>, in R\ {a} with lim,, .. z,, = a. with lim,,_. z,, = a.
Then we have

lim f(z,)=lim A=Alim 1=Ax1=A\.

n—oo n—oo n—oo

]

Theorem 3.7. Suppose’ and g are areR-valued functions defined on subsets of
R. Suppose also, /,m € R, lim,_., f(x) = ¢ andlim,_., g(x) = m. Then

(i) limgo(f(2) + g(2)) = £ +m

(1)
(iii)

lim, ., f(z)g(x) = {m
if m # 0, lim@:£
M@ " m

Proof. (i) The first thing to settle is that the limit of the sum makes sense. We

(ii)

are assuming that: S; — R, ¢: S — R whereS;, S, C R are subsets of
R that each contain a punctured open interval aldigo that the limits we
are assuming to exist can fit into the conditions for Definitiof 3.5 above).

We can reasonably defingé+ ¢ as the functionf + ¢: S; NS, — R by
the rule(f + ¢g)(x) = f(x) + g(x) and to consider the limit of the sum we
should know thatS; N S, contains a punctured open interval abautSay
c1,dy, 2, do are chosen so thate (¢q,dy), (¢1,dy) \{a} C Si,a € (cq,ds),
and(ca,d2) \ {a} C Sy. Thena € (¢1,dy) N (c2,d2) = (¢,d) wherec =
max(cy, ¢2), d = min(d, dy) and(c,d) \ {a} C S; N S,. So the conditions
are right to considelim, ., (f(z) + g(x)).

Take any sequende:,, )2, in (S1 N S2) \ {a} with lim,, ., z, = a. Then
lim,, . f(z,) = ¢ andlim,_. g(x,) = m. It follows from Theorem 2.9
thatlim,, .. f(x,) + g(z,) = ¢ + m. As this is the case for all possible
sequenceér,, )22, as above, we have showh (i).

Essentially the same proof works for products as for sums. Again the prod-
uct function fg can be defined o8, N Sy by (fg)(z) = f(x)g(z). The
conclusionlim,, ., f(x,)g(x,) = ¢m follows by Theorem 2.9 (for any se-
quence(x, )22, in (S1NS2) \ {a} with lim,,_. x,, = a). Thus [{]) follows.
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(iii) Here there is a more complicated issue. We can define the qutienty(x)
when we are not dividing by 0 (and when botfr) andg(z) make sense).
Thus it makes sense farin the set

S={reSiNSs:g(x)#0}

and before we can discusisn, ., f(z)/g(x) we should know tha& con-
tains a punctured open interval abaufThis requires proof.

We know thatS; N S, contains a punctured open interyald) \ {a} (some

¢ < a < d) abouta. It will be more convenient for this argument to have
a symmetric punctured open interval (withn its centre). For this we take
d =min(a — ¢,d — a). Thend > 0 and(a — d,a + ¢) C (¢, d). So we have
(a—6,a+9)\ {a} C S;N Y.

We claimthat S contains a punctured open interval about

It could be thaty(z) is never zero infa — §,a + §) \ {a} and if that is the
case we have a punctured open interval abautntained inS and the claim
is true. If not, there is at least ong € (a — d,a +0) \ {a} with g(z;) = 0.
Fix one such;.

Now consider(a — 6/2,a + §/2) \ {a}. Eitherg(z) is never zero on that
punctured open interval (and so the claim is true) or there,is (a —
0/2,a+d/2) \ {a} with g(z2) = 0.

In general, forn = 3,4, ..., eitherg(x) is never 0 on the punctured open
interval (a — 0/n,a + §/n) \ {a} (and then the claim is true) or there is
xn € (a—90/n,a+d0/n)\ {a} with g(z,) = 0.

If we never findn with (e — §/n,a + §/n) \ {a} C S, then we can find
an infinite sequencér,, ), with z,, € (a — d/n,a + §/n) \ {a} with
g(x,) = 0. Since|z, —a| < §/n it follows fairly easily thatiim,, ., x,, = a.
Sincelim, ., g(z) = m is assumed to be the case and € S \ {a},
we havelim,, ., g(z,) = m. But, asg(z,) = 0 for eachn this means
lim,, . g(x,) = lim,,_., 0 = 0 and this leads t6 = m, contradiction the
assumptionn # 0. This contradiction leads to the conclusion that the claim
must hold.

Take any sequende,,)>°, in S\ {a} with lim,,_, z,, = a.
Thenlim,, .. f(z,) = ¢ andlim,_., g(z,,) = m. It follows from Theo-
rem 2.9 thatim,, .. f(z,)/g9(z,) = ¢/m. As this is the case for all possible
sequencegr,, )2, as above, we have shown|(iii).

O
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Examples 3.8. (i) Letp(r) = ag+ax+---+a,2™ = Y77 a2’ be apolyno-
mial function. (Ifa,, # 0 so that ther” term is actually present in the sum,
then the polynomial is said to be dégreen.)

We can prove by induction omthatlim,_,, " = ™ forn = 1,2,3, ... and

anya € R (and even forn = 0 if we interpretz® as standing for the constant
function 1). We have already verified the case of the constant and the case
n = 1. Once we have checkéihn,_., 2% = o* for a particulark € N we

can see that

lim 2! = lim 2"z = lim 2" lim © = a*a = o™
r—a r—a Tr—a Tr—a
(using Theorerh 3|7 {ii)). By inductiolim,_., " = «" for all n € N (and

a € R).

We can then also prove by induction on the degred the polynomialp(x)
thatlim, ., p(z) = p(a). For the case = 1 we have

lim ag + a1z = lim a¢ + lim a1 = ag + (lim a;)(lim ) = ag + a1a
r—a r—a r—a

r—a r—a

For the inductive step, if we know that

k k
lim E a;x’ = E a;a’
r—a

Jj=0 Jj=0

forall a, ag,ay, ..., a, then

k+1 k
lim g a;x’ = lim E a;x’ + a1zttt
T—a 4 5 T—a

J:

J=0

k
= lim ( E ajx7> + lim apyq 2™
r—a r—a
J=0
k

= Zajaj + (lim ak+1> (hm :L‘k+1>
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(i) A rational function is a function of the form(z) = p(z)/q(z) wherep(z)
andq(x) are polynomials ang(z) is not the zero polynomial. The domain
of r(z) isthe setS = {z € R: ¢(z) # 0}.

From the previous facts about limits of polynomials we can show that if
a € S, then
lim r(x) = r(a)

by using Theorerp 3|7 (jii).

Theorem 3.9. Supposef: S — R is a function defined on a subs&tC R that
contains a punctured open interval about some pairt R. Let/ € R. Then
lim,_., f(z) = ¢ holds if and only if the following-¢ criterionis satisfied:

For eache > 0 it is possible to find > 0 so that

|f(z) — ¢| < eforeachz € Rwith0 < |z —a| < 4.

Proof. A statement of this “if and only if” type contains two assertions in one and
both have to be proved independently. There is an ‘implies’ or ‘only if’ direction
= which is that if the first statemenim, ., f(z) = ¢ is true then the second
statement (the-d criterion) must hold. In addition there is the ‘if’ or reverse
implication directiork= where we must show that if the second statementsihe
criterion) is valid therdim,_., f(z) = ¢ must hold.

The net effect is to show that the two statements are equivalent in the sense
that any time either one of them is valid, then the other is also valid. Of course, if
any one of them is not valid, then the other is also false.

= Assume now we knovdim,_., f(z) = ¢ is true. Then the domaif of f
must contain a punctured open interval aboand as in the early part of the proof
of Theoren 3.J7(i]i) above we can assume that there is a symmetric punctured open
interval (a — &g, a + do) \ {a} C S for somed, > 0. (We usej, how because we
will need a different) in a moment.)

To establish the-¢ criterion, start withe > 0 given. We claim there must be
a suitabley > 0 so that

|f(xz) — ¢] < eforeachr € Rwith 0 < |z — a| < 0.

If 6 = do/n does not work for any. € N, then (since alk: with 0 < |z —a| <
do/n havel < |z — a| < dy, and so all suckr are in(a — dg, a + &) \ {a} C 5)
there must be;,, with 0 < |z,, — a|] < o/n and|f(z,) — ¢| > . Now (z,,)32,
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would be a sequence ifi \ {a}, lim, .. x, = a (as is easy to check based on
|z, —a| < do/n) and yetlim,, ., f(x,) # ¢. This contradicts the assumption that
lim, ., f(z) = ¢.

The contradiction arose by assuming that the claim is not satisfiéd-o, /n
foranyn € N. So there is @ > 0 that satisfies the claim.

< Suppose now that theé criterion holds (fora, f and/). To show that
lim,_, f(z) = ¢, consider any sequen¢e, )2, in S\ {a} with lim,, ., z, = a.
To show thatlim,,_., f(z,) = ¢ (according to thes-N definition of limits of
sequences) let > 0 be given. Then we can fintl> 0 according to the criterion
we are assuming to be valid so that (for these particuéardJ)

|f(x) —¢] < eforeachr € Rwith 0 < |z — a| < 6.

Now using thes- N definition of limits of sequences with*= ¢ we know we can
find NV € N so that
|z, —a| < dforalln > N.

Putting these two statements together with the factithag « for all n, we
have
n>N=0<|z,—a|l<d=|f(zn) — (| <e.

The fact that we can find such @&nfor any givere > 0 establisheim,, ... f(z,) =
¢. As this is true for all sequencégs,,)>, in S\ {a} with lim,,_,. z, = a we

n=1

have shownim,_., f(z) = /. O

Definition 3.10. If f:.S — R is a function on a subseét C R anda € S then f
is calledcontinuous at: if the followinge-¢ criterionis satisfied:

For eache > 0 it is possible to find > 0 so that
xe S |r—al<d=|f(z)— fla)| <e.

n

Example 3.11.Polynomial functiong(z) = >_"_ a;2’ are continuous at every
a € R.

Proof. Herep:R — R. We already know thalim, ., p(x) = p(a) (examples
above) and we use the fact that this can be restated viadacriterion (Theo-

rem[3.9).

Starting withe > 0 given Theorem 3]9 tells us we can fitid> 0 so that

0<|z—a|l<d=|p(x)—pla)| <e.
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Butz = a gives|p(z) — p(a)| = |p(a) — p(a)] = 0 < € and so we do not need to
rule out|z — a| = 0 in this situation. We have then

|z —al <0 =|p(x) —pla)| <¢

and this means we have fouad> 0 to ensure the criterion of Definitidn 310
holds for the giverr > 0. As we can do this for any > 0, we have established
continuity ofp(z) ata. O

Definition 3.12. If S C Ris a subset oR anda € S, thena is called aninterior
point of S if there is an open interval that containsand is contained irp.
In other words, if there are < d witha € (¢,d) C S.

Proposition 3.13.Let f: S — R be a function defined o C R anda € S an
interior point of S. Thenf is continuous at if and only iflim, ., f(z) = f(a).

Proof. With a little care, this follows from Theorem 3.9. There is a restriction to
x € S in the definition of continuity which is not present in thel condition of
Theoren{ 3.9, and in the theorem the restrictior |z — a| is present to avoid
consideringr = a while taking the limit. Since we are dealing with an interior
point of S, thex € S condition can be subsumed jn — a| < § if we ensure
thato is reasonably small. Since the limit f§a) the condition) < |z — a] is not
needed.

= Firstchoose < a < dwith (¢,d) C S. Putdy = min(a—c, d—a) and then
we havey, > 0 with (a—dy, a+dp) C S. Our aim is to showim, ., f(z) = f(a)
via thee- condition of Theorerh 3]9.

Lete > 0 be given. Applying the definition of continuity atwe can find
9’ > 0 so that

r €S |x—al<d=|f(z)— fla)| <e.

We usey’ because we now sét= min(dy, ¢’). Then
|z—a| < 0 = |x—al < &g and|z—a| < ' = z € S and|z—a| < ' = |f(x)—f(a)] < e.
By Theorenj 38im,_., f(z) = f(a).

<: Assume now thaltim, ., f(z) = f(a). To show continuity at, lete > 0

be given. By Theorein 3.9 we can find> 0 so that

O0<|z—a|l<d=|f(z)— fla)] <e.
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The restrictior) < |z — a| is not needed sindg (z) — f(a)| < ¢ is certainly true
for x = a. Thus
[z —al <6 =[f(z) = fla)] <&

It follows that
xe S |r—al<d=|f(x)— fla)| <e,

which shows that thé we got from the theorem satisfies the condition in the
definition of continuity.

Since we can find such@&> 0 for each initiale > 0, we have shown that
must be continuous at O

Definition 3.14. If S C R anda € S, thena is called anisolated point ofS' if
there is an open interval aroundthat contains no point of apart froma.
That is, if there exist < a < d so that(c,d) N S = {a}.

Lemma 3.15.1f S C R, f:S — Randa € S is an isolated point of, thenf is
automatically continuous at.

Proof. Chooser < a < d with (¢,d) NS = {a}. Putd = min(a — ¢,d — a) and
then

reS |z—a|<d=z€ (a—0d,a+0)NS Cc,dNS ={a} =z =a= f(x)—f(a) =0.
Thus for anye > 0 and this choice of > 0 we have
re S |jr—al <d=|f(x)— fla)] <e.
[

Example 3.16.Let S = (0,1) U {2}. Then2 is an isolated point of and every
other point is an interior point. Iff: S — R, thenf is automatically continuous
at 2 and continuity at. € (0, 1) is equivalent tdim,._., f(z) = f(a).

At least at interior points, we can view the continuity condition as a stability
condition. A small change in the value efaway fromz = a produces a small
change in the valug(z) away fromf(a).

Thee-d definition of continuity makes this more precisds to be interpreted
as a precise meaning fgfx) to be close tgf (a) and the idea is that, having fixed
that, there is a way to interpretclose thea (the distance)) so that when is
close toa in this sense theffi(z) is ‘close’ to f(a) in the desired sense.

For practical purposes where it is common to compute with decimal approxi-
mations, this is important because it says that if you do the calculations sufficiently
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accurately (though still not exactly) you will get an accurate valugffoy. If the
function is discontinuous at, the smallest approximation madean® « could
produce a big change if(z).

For points that are not interior points, the restriction that S can be at least
as important as the one thats ‘close’ toa. In the extreme case of an isolated
a € S we see that continuity atdoes not place any condition on the function.

Remark 3.17. We introduced limits of functions in Definitipn B.5 by relying on
limits of sequences and we proved in Theorem 3.9 that an alternative approach
via ane-g criterion would yield the same concept. For continuity (at a point) we
used a definition based and in[3.10. Now we show that a sequence approach
also works for continuity.

Theorem 3.18.Let S C R, f: S — R a function ada € S a point. Thenf is
continuous at if and only if the following holds

for each sequencer,,)> , of termsz,, € S with lim,, .., z,, = a we
havelim,,_... f(z,) = f(a).

Proof. =-: Assume now thay is continuous and letz,,);° , be a sequence ifi
converging taz. To showlim,, ., f(x,) = f(a) by using the definition of limit
of a sequence directly, we take> 0 given and we claim there ¥ € N so that
n>N=|f(z.) — fla)| <e.
By continuity we know we can find > 0 so that

re S |lrv—al<d=|f(z)— fla)| <e.

Using thes-N definition of what it means folim,, .., x,, = a with the role of
positive numbere’ taken byd > 0 we deduce that there 1§ € N so that

n>N= |z, —al <4
Putting these two statements together we have
n>N = |z, —a| <dandz, € S =|f(z,) — f(a)| <e,

and so we havéV as required.
As we can findV for eache > 0 given, we have showiim,, ... f(z,) = f(a).
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<: Assume now that we have the information about sequences and we aim to
show thatf is continuous at.. Lete > 0 be given and we claim there is some
0 > 0 so that
ze S |r—al<d=|f(zx)— fla)] <e.

If that is not the case, theh = 1/n will not satisfy this and so there must
be somer, € S so that|z,, —a| < 1/n but|f(x,) — f(a)] > €. Chose such

anzx, for eachn = 1,2,3,.... Itis easy to see then thiéin, .., x, = a and
lim,, . f(z,) # f(a) contradicting the assumption.
Sod = 1/n must satisfy the desired implication (for somes N). Il

Definition 3.19.If S € Rand f: S — Ris a function, thery is calledcontinuous
on S if fis continuous at each poiate S.

Corollary 3.20. LetS ¢ Rand letf, g: S — R be two continuous functions.
(i) The functionf + ¢g: S — R defined by the ruléf + g)(z) = f(z) + g(x)
(for x € S) is continuous.
In short ‘sums of continuous functions are continuous’.
(i) The functionfg: S — R defined by the ruléfg)(z) = f(z)g(z) (for z € 5)
IS continuous.
In short ‘products of continuous functions are continuous’.

(iii) If g(x) # 0 for eachx € S, then the functiorﬂg: S — R defined by the rule

(5) (w) = L4 (for z € S) is continuous.

In short ‘quotients of continuous functions are continuous (as long as the
denominator is never zero)'.

Proof. Itis quite easy to use Theor¢m 3.18 to verify these claims.

(i) Leta € S and let(z,)5°, a be a sequence ifl that converges ta. Then
lim, . f(x,) = f(a) andlim,_., g(x,) = g(a) by continuity of f andg
(using Theorerp 3.18). By the theorem on limits of sums of sequences (2.9),
we deducéim,,_. f(z,)+g(z,) = f(a)+g(a) and so (using Theorejm 3/18
again)f + g is continuous at.

Since this is true for all. € S, we havef + g continuous (orb).

(ii)
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(i) The proofs are essentially the same.
O

Notation 3.21.If f: S — R is a function andl’ C S, then therestriction of f to
T is the functionf |r: T — R given by the rulé f |7)(x) = f(z) forxz € T.

We can think of the restriction as forgetting about some of the vaf@esof
the original functionsf (and only retaining those wheree T'). In terms of the
graphs, the graph of the restriction would be just part of the gragh of

It is very easy to see from either the definition of continuity or Thedrem 3.18
that the restriction of a continuous function will be continuous. More precisely,
a €T C Sandf: S — Ris continuous at, thenf |7 is continuous at. Starting
with £ > 0 given, continuity off ata says there i > 0 so that

reS |r—al <d=|f(zx)— fla)| <e.
Thus
rel,|lxr—a|l<d=azeS |xv—al<d=|f(z)— fla)] <e

and so
zeT,|z—al <d=|(fIr)(z) = (f |r)(a)] <e.

Definition 3.22. If S, T C R, f: S — T andg: T — R, then thecompositionof
f and g (also known ag after f) is the functiorny o f: S — R given by the rule
(g0 f)(x) = g(f(x)) forz € 5.

We pronounce o f as ‘g circle f’.

It is possible to defing o f when the co-domain of is not the domain o#,
if we ask just thatf(S) C T (the range off is contained in the domain @), but
there are various abstract settings where this in not the way to do things and so we
will stick officially to the definition as given.

There is a technical difference between a functfo — 7 whereT C R
and the functionsS — R and: S — f(S) given by the same rule — f(z). For
example surjectivity can depend on which function we consider (which co-domain
we take). However, in many ways the differences are technical.

We do consider a functiofi: S — T to be continuous when the (almost same)
function: S — R (z — f(z)) is continuous.

Theorem 3.23.Let S,T C R be subsets, and: S — T andg¢g:T — R two
continuous functions. Then tkempositionof g o f: S — R is continuous.
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Proof. Fix a € S and then we will show thag o f is continuous at via the
sequence criterion Theordm 3.18. Let,)>>, be a sequence ifi that converge
to a (that is withlim,, ., ,, = a). Thenlim,,_., f(x,) = f(a) by continuity of
f ata.

Now fory,, = f(x,), (y,)2, is a sequence ifi that converges th= f(a) €
T. By continuity of g atb (and Theorem 3.18 again) we haley, . g(y,) =
g(b). Thatis

lim g(f(x.)) = g(f(0)),

n—oo

lim (g o f)(zn) = (g0 f)(a).

n—oo

As this is true for all sequencés,,)> , in S converging ta, it implies thatg o f
is continuous at.
As this holds for each € S, it follows thatg o f is continuous. O

or

Remark 3.24. The idea of using different variables for different functions can
help to keep track of compositions. If we write= f(x) andz = ¢(y), then
z = g(y) = g(f(x)) is almost automatic.

Alternatively, we may use = f(x) andy = g(u) with y = g(f(x)).

Remark 3.25. We have 2 ways to characterise continuity of a functfols —
R at any pointa € S — the originale-d definition and the sequence criterion
Theoreni 3.18.

For interior pointsa € S, we also have the criteriolm, ., f(x) = f(a) by
Propositior) 3.13.

We can also use a variation of a limit criterion at either end of a closed interval.
If f:]a,b] — C we can characterise continuity @via a one-sided limit (and we
can do something similar &j.

Definition 3.26. 1. Letf:.S — R be defined on a sétthat includes and open
interval (a, b) with a < b. Let/ € R. Then we say that théght hand limit
lim, ..+ f(z) is ¢ if the followinge-4§ criterion holds:

For eache > 0 itis possible to find > 0 so that
O<z—a<d=|f(x)—/{ <e.

2. Let f: S — R be defined on a set that includes and open intervét, a)
with ¢ < a. Let? € R. Then we say that theft hand limitlim, ., f(x) is
¢ if the followinge-¢ criterion holds:
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For eache > 0 itis possible to find > 0 so that
O<a—z<d=|f(z)—{ <e.

Proposition 3.27.Let f: [a, b] — R be a function on an interval where< b.
(i) fiscontinuous at if and only iflim, .+ f(z) = f(a).
(i) fiscontinuous ab if and only iflim, .,- f(z) = f(b).

Proof. (of (i) as (ii) is similar).
Continuity of f ata means that

For eacle > 0 it is possible to findd > 0 so that

x € [a,b], |z —a] <d=|f(x) — f(a)] <e.

The criterion forlim, ..+ f(x) = f(a) has two differences. There is noc [a, b]
andz = a is not considered. However the point about allowing- a is not a
problem since whem = « we automatically havef(z) — f(a)| =0 < e.

Notice that

x € [a,b],|lr—a|l<d=0<|z—a|l <o
and if we assumeé < b — a, we can say
0<|r—a|l<d=x€ab]|z—a| <d
To make a formal proof we need to show 2 things.

f is continuous ata = lim, ..+ f(z) = f(a). :
Start withe > 0. From continuity at: find 6 > 0 so that

x € [a,b], |z —a| <d=|f(x) — fla)] <e.
Takedy, = min(d, b — a) and then we havé, > 0 and

O<zx—a<d = x€lab]|r—al <o

= |f(x) = fla)] <e

so that we have shown that the criterion fon, ..+ f(z) = f(a) holds.
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lim, ..+ f(z) = f(a) = fis continuous ata. :
Start withe > 0. Fromlim, ..+ f(z) = f(a), we can findd > 0 so that

O<z—a<d=|f(x)— fla)] <e.
Now,
r€lab],|lr—al<d=0<zr—a<d=|f(zr)— fla)] <e

because it is true for = a as well as for) < x —a < §. Thusf is
continuous at:.
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