
Chapter 3: Limits of functions (121 2004–05)

Remarks 3.1.We move on now to start to deal with functions and most of the re-
mainder of the course will be about functions. We will first discuss limits of func-
tionslimx→a f(x), keeping in the back of our minds that we will define derivatives
later viaf ′(a) = limh→0

f(a+h)−f(a)
h

.

We did already define functions in 2.1 and more terminology about functions
(for example: injective [or ‘one-one’], surjective [or onto], bijective, inverse func-
tion) is part of course 111. Functions are used in essentially all parts of mathe-
matics and in course 111 the emphasis is more on algebraic contexts (groups and
mappings between them, for example, or permutations) but we will deal mostly
with functions between sets of numbers and these can be visualised effectively in
a graphical way.

There is a Venn diagram approach to functions, treating sets as rather abstract
blobs with elements indicated or marked as ‘points’ inside. Functionsf : A → B
can be thought of schematically as indicated by arrows starting at pointsa in the
domain setA and ending at pointsb = f(a) ∈ B. There has to be exactly one
arrow starting at eacha ∈ A (in this picture off ). Graphs are a more satisfactory
picture for functions whereA andB are the real numbersR or subsets ofR.

Thegraphof a functionf is a set of ordered pairs

Graph(f) = {(a, b) ∈ A×B : b = f(a)}

in the cartesian product ofA andB (a subsetG with the property that for each
a ∈ A there is ab ∈ B so that(a, b) ∈ G but also that if(a, b1) ∈ G and
(a, b2) ∈ G thenb1 = b2). WhenA, B ⊂ R, we can picture the graph Graph(f) ⊂
A×B ⊂ R× R = R2 as a set of points in the plane.

Typically (or in simple cases) this graph is a ‘curve’ in the plane with the
property that each vertical line crosses it at most once.
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f(x)

x

y = f(x)
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The (vertical) linex = x0 crosses the graph (once) ifx0 ∈ A = the domain of
f . A horizontal liney = y0 crosses the graph ify0 = f(x) for somex ∈ A, that
is if y0 is in therangeof f (which is{f(x) : x ∈ A}). The function is surjective
(or onto) if each horizontal liney = y0 with y0 ∈ B does cross the graph at least
once. The function is injective exactly when each horizontal line crosses the graph
at most once. [Explanation: If the liney = y0 crosses the graph more than once
it means that there are at least twox1, x2 ∈ A with f(x1) = f(x2) = y0 (and
x1 6= x2).]

Intervals 3.2. In many cases we will be dealing with functionsf : A → B where
the setsA andB are intervals. Here we will review the notation for intervals.

If a, b ∈ R anda ≤ b, then theclosed intervalwith end pointsa andb is the
set of all real numbers betweena andb inclusive of the end points:

[a, b] = {x ∈ R : a ≤ x and x ≤ b} = {x ∈ R : a ≤ x ≤ b}

Theopen intervalbetweena andb is

(a, b) = {x ∈ R : a < x < b}

There are various infinite intervals (no endpoint on one side or the other) and
we use the notations∞ and−∞ as convenient replacements for the missing end-
points to the right or left. We do not mean to imply that there are any numbers∞
or−∞.
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Here are the semi-infinite open and closed intervals (a, b ∈ R) and the nota-
tions we use

[a,∞) = {x ∈ R : a ≤ x}
(a,∞) = {x ∈ R : a < x}

(−∞, b] = {x ∈ R : x ≤ b}
(−∞, b) = {x ∈ R : x < b}

Note the convention that round brackets (or parentheses) are used for end points
that are not included in the set. If all (finite) end points are included we refer to
the interval as closed. If no finite intervals are included we call the interval open.
So [a,∞) and(−∞, b] are closed, while(a,∞) and(−∞, b) are open. There is
one doubly infinite interval

(−∞,∞) = R

and it counts as both open and closed.
There remain two other types of intervals we may encounter once or twice, the

half-open and half-closed intervals (which are neither open nor closed)

[a, b) = {x ∈ R : a ≤ x < b}
(a, b] = {x ∈ R : a < x ≤ b}

where we restrict toa < b.
Technically we could allowa = b in the case[a, b] but [a, a] = {a} is just

a one-point set and this will either be a very simple case or a case we will not
want to consider in future theorems. The case(a, a) is the empty set and we will
probably never want to consider that.

Examples 3.3.For the functionf : R → R with f(x) = x2, the range (set of
values) turns out to be{y ∈ R : y ≥ 0} = [0,∞). We will prove this properly
later. We may sometimes wish to discuses the same functionx2 but concentrate
on a range of values ofx like 0 ≤ x ≤ 1 and then we are dealing with a different
functiong: [0, 1] → R given by the same formulag(x) = x2.

At times we may want to have a surjective version of (essentially the same)
function. Sayh: [0, 1] → [0, 1] given byh(x) = x2. Technicallyh and g are
different because they have different co-domains but we may have to switch at
times fromg to h (and it is not such a huge distinction because the two functions
g andh have identical domains and identical values).
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Another type of example is a function given by a rule likef(x) = 1/x which
clearly does not make sense forx = 0 (when we would be trying to divide by0).
So the natural thing is to just make that restriction and considerf : R \ {0} → R
given byf(x) = 1/x. Here we have strayed outside having the domainA and
co-domainB being intervals.R \ {0} = (−∞, 0) ∪ (0,∞) is a union of two
intervals.

The set difference notationA \ B means to take away fromA any elements of
B which may be inA. SoA \B = {x ∈ A : x /∈ B}. For instance[0, 2] \ [1, 3] =
[0, 1) and [0, 1] \ [3, 4] = [0, 1]. (It makes no difference toA to take away all
elements ofB if none of the elements ofB were inA to start with.)

Notation 3.4. If a ∈ R, then a puncturedopen interval abouta means a subset of
R of the form(c, d) \ {a} wherec < a < b.

We can write(c, d) \ {a} = (c, a) ∪ (a, d) as a union of two open intervals on
either side ofa.

Definition 3.5. SupposeS ⊂ R is a subset,f : S → R is a real-valued function
on S, a ∈ S and suppose thatS contains a punctured open interval abouta. Let
` ∈ R be a number. Then we say that` is a limit off asx approachesa and write

lim
x→a

f(x) = `

if the following holds:

for each sequence(xn)∞n=1 in S \ {a} with limn→∞ xn = a it is true
that limn→∞ f(xn) = `.

Remark. Limits are unique (if they exist).

Proof. We already know that a sequence can only have one limit (Proposition
2.7). Therefore as long as there is at least one sequence(xn)∞n=1 in S \ {a} with
limn→∞ xn = a, we cannot have two values forlim x → af(x), because then
limn→∞ f(xn) would have two values.

It is here that we rely on the fact that the domainS contains a punctured open
interval abouta. Sayb < a < c and(b, c)\{a} ⊂ S. Thenxn = a+(c−a)/(n+1)
is a valid choice of a sequence(xn)∞n=1 in S \ {a} with limn→∞ xn = a.

Examples 3.6. (i) limx→2 x2 = 4
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Proof. Note thatf(x) = x2 makes sense for allx ∈ R and so we can
treatf as a functionf : R → R. Then the domainR certainly contains a
punctured open interval about2 and we are in a position to contemplate
limx→2 f(x) = limx→2 x2.

[Aside. The fact thatf(2) actually makes sense is not relevant and we
will never use that in the course of the proof. While calculatinglimx→2 x2

we never usex = 2 at all. (The reason for this is that the kind of lim-
its we will encounter later when dealing with derivatives are of the form
limh→0

f(a+h)−f(a)
h

and the faction there does not make sense if we had
h = 0.)]

Now take any sequence(xn)∞n=1 in R \ {2} with limn→∞ xn = 2. Then we
have

lim
n→∞

x2
n = lim

n→∞
xnxn =

(
lim

n→∞
xn

)(
lim

n→∞
xn

)
by the theorem on limits of products (of sequences). Thus we get2× 2 = 4.

Sincelimn→∞ x2
n = 4 no matter which sequence(xn)∞n=1 we take inR \ {2}

with limn→∞ xn = 2, we have shown thatlimx→2 x2 = 4.

The next two examples will be building blocks for future use.

(ii) For anya ∈ R, limx→a x = a.

Proof. This is really easy to show, because the criterion is self-evidently
true.

We can consider the function to bef : R → R given byf(x) = x and again
there is no question but that the domain contains a punctured open interval
abouta. (We could write down(a − 1, a + 1) \ {a} if we want to see a
specific punctured open interval, but there are many possible choices.) We
start with any sequence(xn)∞n=1 in R \ {a} with limn→∞ xn = a. Then we
have

lim
n→∞

f(xn) = lim
n→∞

xn = a

automatically true.

So we have shownlimx→a x = a.

(iii) For anya ∈ R, and any (constant)λ ∈ R, limx→a λ = λ.
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Proof. In this case the function is the constant onef(x) = λ. Start with any
sequence(xn)∞n=1 in R \ {a} with limn→∞ xn = a. with limn→∞ xn = a.
Then we have

lim
n→∞

f(xn) = lim
n→∞

λ = λ lim
n→∞

1 = λ× 1 = λ.

Theorem 3.7. Supposef andg are areR-valued functions defined on subsets of
R. Suppose alsoa, `,m ∈ R, limx→a f(x) = ` and limx→a g(x) = m. Then

(i) limx→a(f(x) + g(x)) = ` + m

(ii) limx→a f(x)g(x) = `m

(iii) if m 6= 0, lim
x→a

f(x)

g(x)
=

`

m

Proof. (i) The first thing to settle is that the limit of the sum makes sense. We
are assuming thatf : S1 → R, g: S2 → R whereS1, S2 ⊂ R are subsets of
R that each contain a punctured open interval abouta (so that the limits we
are assuming to exist can fit into the conditions for Definition 3.5 above).

We can reasonably definef + g as the functionf + g: S1 ∩ S2 → R by
the rule(f + g)(x) = f(x) + g(x) and to consider the limit of the sum we
should know thatS1 ∩ S2 contains a punctured open interval abouta. Say
c1, d1, c2, d2 are chosen so thata ∈ (c1, d1), (c1, d1)\{a} ⊂ S1, a ∈ (c2, d2),
and(c2, d2) \ {a} ⊂ S2. Thena ∈ (c1, d1) ∩ (c2, d2) = (c, d) wherec =
max(c1, c2), d = min(d1, d2) and(c, d) \ {a} ⊂ S1 ∩ S2. So the conditions
are right to considerlimx→a(f(x) + g(x)).

Take any sequence(xn)∞n=1 in (S1 ∩ S2) \ {a} with limn→∞ xn = a. Then
limn→∞ f(xn) = ` and limn→∞ g(xn) = m. It follows from Theorem 2.9
that limn→∞ f(xn) + g(xn) = ` + m. As this is the case for all possible
sequences(xn)∞n=1 as above, we have shown (i).

(ii) Essentially the same proof works for products as for sums. Again the prod-
uct functionfg can be defined onS1 ∩ S2 by (fg)(x) = f(x)g(x). The
conclusionlimn→∞ f(xn)g(xn) = `m follows by Theorem 2.9 (for any se-
quence(xn)∞n=1 in (S1 ∩ S2) \ {a} with limn→∞ xn = a). Thus (ii) follows.
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(iii) Here there is a more complicated issue. We can define the quotientf(x)/g(x)
when we are not dividing by 0 (and when bothf(x) andg(x) make sense).
Thus it makes sense forx in the set

S = {x ∈ S1 ∩ S2 : g(x) 6= 0}

and before we can discusslimx→a f(x)/g(x) we should know thatS con-
tains a punctured open interval abouta. This requires proof.

We know thatS1 ∩ S2 contains a punctured open interval(c, d) \ {a} (some
c < a < d) abouta. It will be more convenient for this argument to have
a symmetric punctured open interval (witha in its centre). For this we take
δ = min(a− c, d− a). Thenδ > 0 and(a− δ, a + δ) ⊂ (c, d). So we have
(a− δ, a + δ) \ {a} ⊂ S1 ∩ S2.

Weclaim thatS contains a punctured open interval abouta.

It could be thatg(x) is never zero in(a − δ, a + δ) \ {a} and if that is the
case we have a punctured open interval abouta contained inS and the claim
is true. If not, there is at least onex1 ∈ (a− δ, a + δ) \ {a} with g(x1) = 0.
Fix one suchx1.

Now consider(a − δ/2, a + δ/2) \ {a}. Eitherg(x) is never zero on that
punctured open interval (and so the claim is true) or there isx2 ∈ (a −
δ/2, a + δ/2) \ {a} with g(x2) = 0.

In general, forn = 3, 4, . . ., eitherg(x) is never 0 on the punctured open
interval (a − δ/n, a + δ/n) \ {a} (and then the claim is true) or there is
xn ∈ (a− δ/n, a + δ/n) \ {a} with g(xn) = 0.

If we never findn with (a − δ/n, a + δ/n) \ {a} ⊂ S, then we can find
an infinite sequence(xn)∞n=1 with xn ∈ (a − δ/n, a + δ/n) \ {a} with
g(xn) = 0. Since|xn−a| < δ/n it follows fairly easily thatlimn→∞ xn = a.
Since limx→a g(x) = m is assumed to be the case andxn ∈ S \ {a},
we havelimn→∞ g(xn) = m. But, asg(xn) = 0 for eachn this means
limn→∞ g(xn) = limn→∞ 0 = 0 and this leads to0 = m, contradiction the
assumptionm 6= 0. This contradiction leads to the conclusion that the claim
must hold.

Take any sequence(xn)∞n=1 in S \ {a} with limn→∞ xn = a.
Then limn→∞ f(xn) = ` and limn→∞ g(xn) = m. It follows from Theo-
rem 2.9 thatlimn→∞ f(xn)/g(xn) = `/m. As this is the case for all possible
sequences(xn)∞n=1 as above, we have shown (iii).
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Examples 3.8. (i) Let p(x) = a0 +a1x+ · · ·+anx
n =

∑n
j=0 ajx

j be apolyno-
mial function. (If an 6= 0 so that thexn term is actually present in the sum,
then the polynomial is said to be ofdegreen.)

We can prove by induction onn thatlimx→a xn = an for n = 1, 2, 3, . . . and
anya ∈ R (and even forn = 0 if we interpretx0 as standing for the constant
function 1). We have already verified the case of the constant and the case
n = 1. Once we have checkedlimx→a xk = ak for a particulark ∈ N we
can see that

lim
x→a

xk+1 = lim
x→a

xkx = lim
x→a

xk lim
x→a

x = aka = ak+1

(using Theorem 3.7 (ii)). By inductionlimx→a xn = an for all n ∈ N (and
a ∈ R).

We can then also prove by induction on the degreen of the polynomialp(x)
that limx→a p(x) = p(a). For the casen = 1 we have

lim
x→a

a0 + a1x = lim
x→a

a0 + lim
x→a

a1x = a0 + (lim
x→a

a1)(lim
x→a

x) = a0 + a1a

For the inductive step, if we know that

lim
x→a

k∑
j=0

ajx
j =

k∑
j=0

aja
j

for all a, a0, a1, . . . , ak, then

lim
x→a

k+1∑
j=0

ajx
j = lim

x→a

(
k∑

j=0

ajx
j

)
+ ak+1x

k+1

= lim
x→a

(
k∑

j=0

ajx
j

)
+ lim

x→a
ak+1x

k+1

=
k∑

j=0

aja
j +
(

lim
x→a

ak+1

)(
lim
x→a

xk+1
)

=
k∑

j=0

aja
j + ak+1a

k+1

=
k+1∑
j=0

aja
j
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(ii) A rational function is a function of the formr(x) = p(x)/q(x) wherep(x)
andq(x) are polynomials andq(x) is not the zero polynomial. The domain
of r(x) is the setS = {x ∈ R : q(x) 6= 0}.
From the previous facts about limits of polynomials we can show that if
a ∈ S, then

lim
x→a

r(x) = r(a)

by using Theorem 3.7 (iii).

Theorem 3.9. Supposef : S → R is a function defined on a subsetS ⊂ R that
contains a punctured open interval about some pointa ∈ R. Let ` ∈ R. Then
limx→a f(x) = ` holds if and only if the followingε-δ criterion is satisfied:

For eachε > 0 it is possible to findδ > 0 so that

|f(x)− `| < ε for eachx ∈ R with 0 < |x− a| < δ.

Proof. A statement of this “if and only if” type contains two assertions in one and
both have to be proved independently. There is an ‘implies’ or ‘only if’ direction
⇒ which is that if the first statementlimx→a f(x) = ` is true then the second
statement (theε-δ criterion) must hold. In addition there is the ‘if’ or reverse
implication direction⇐ where we must show that if the second statement (theε-δ
criterion) is valid thenlimx→a f(x) = ` must hold.

The net effect is to show that the two statements are equivalent in the sense
that any time either one of them is valid, then the other is also valid. Of course, if
any one of them is not valid, then the other is also false.

⇒: Assume now we knowlimx→a f(x) = ` is true. Then the domainS of f
must contain a punctured open interval abouta and as in the early part of the proof
of Theorem 3.7 (iii) above we can assume that there is a symmetric punctured open
interval(a− δ0, a + δ0) \ {a} ⊂ S for someδ0 > 0. (We useδ0 now because we
will need a differentδ in a moment.)

To establish theε-δ criterion, start withε > 0 given. We claim there must be
a suitableδ > 0 so that

|f(x)− `| < ε for eachx ∈ R with 0 < |x− a| < δ.

If δ = δ0/n does not work for anyn ∈ N, then (since allx with 0 < |x− a| <
δ0/n have0 < |x− a| < δ0, and so all suchx are in(a− δ0, a + δ0) \ {a} ⊂ S)
there must bexn with 0 < |xn − a| < δ0/n and|f(xn) − `| ≥ ε. Now (xn)∞n=1



10 Chapter 3: Limits of functions

would be a sequence inS \ {a}, limn→∞ xn = a (as is easy to check based on
|xn−a| < δ0/n) and yetlimn→∞ f(xn) 6= `. This contradicts the assumption that
limx→a f(x) = `.

The contradiction arose by assuming that the claim is not satisfied byδ = δ0/n
for anyn ∈ N. So there is aδ > 0 that satisfies the claim.

⇐: Suppose now that theε-δ criterion holds (fora, f and`). To show that
limx→a f(x) = `, consider any sequence(xn)∞n=1 in S \ {a} with limn→∞ xn = a.
To show thatlimn→∞ f(xn) = ` (according to theε-N definition of limits of
sequences) letε > 0 be given. Then we can findδ > 0 according to the criterion
we are assuming to be valid so that (for these particularε andδ)

|f(x)− `| < ε for eachx ∈ R with 0 < |x− a| < δ.

Now using theε-N definition of limits of sequences with ‘ε’= δ we know we can
find N ∈ N so that

|xn − a| < δ for all n ≥ N.

Putting these two statements together with the fact thatxn 6= a for all n, we
have

n ≥ N ⇒ 0 < |xn − a| < δ ⇒ |f(xn)− `| < ε.

The fact that we can find such anN for any givenε > 0 establisheslimn→∞ f(xn) =
`. As this is true for all sequences(xn)∞n=1 in S \ {a} with limn→∞ xn = a we
have shownlimx→a f(x) = `.

Definition 3.10. If f : S → R is a function on a subsetS ⊂ R anda ∈ S thenf
is calledcontinuous ata if the followingε-δ criterion is satisfied:

For eachε > 0 it is possible to findδ > 0 so that

x ∈ S, |x− a| < δ ⇒ |f(x)− f(a)| < ε.

Example 3.11.Polynomial functionsp(x) =
∑n

j=0 ajx
j are continuous at every

a ∈ R.

Proof. Herep: R → R. We already know thatlimx→a p(x) = p(a) (examples
above) and we use the fact that this can be restated via anε-δ criterion (Theo-
rem 3.9).

Starting withε > 0 given Theorem 3.9 tells us we can findδ > 0 so that

0 < |x− a| < δ ⇒ |p(x)− p(a)| < ε.
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But x = a gives|p(x)− p(a)| = |p(a)− p(a)| = 0 < ε and so we do not need to
rule out|x− a| = 0 in this situation. We have then

|x− a| < δ ⇒ |p(x)− p(a)| < ε

and this means we have foundδ > 0 to ensure the criterion of Definition 3.10
holds for the givenε > 0. As we can do this for anyε > 0, we have established
continuity ofp(x) ata.

Definition 3.12. If S ⊂ R is a subset ofR anda ∈ S, thena is called aninterior
point ofS if there is an open interval that containsa and is contained inS.

In other words, if there arec < d with a ∈ (c, d) ⊂ S.

Proposition 3.13. Let f : S → R be a function defined onS ⊂ R anda ∈ S an
interior point ofS. Thenf is continuous ata if and only iflimx→a f(x) = f(a).

Proof. With a little care, this follows from Theorem 3.9. There is a restriction to
x ∈ S in the definition of continuity which is not present in theε-δ condition of
Theorem 3.9, and in the theorem the restriction0 < |x − a| is present to avoid
consideringx = a while taking the limit. Since we are dealing with an interior
point of S, thex ∈ S condition can be subsumed in|x − a| < δ if we ensure
thatδ is reasonably small. Since the limit isf(a) the condition0 < |x− a| is not
needed.

⇒: First choosec < a < d with (c, d) ⊂ S. Putδ0 = min(a−c, d−a) and then
we haveδ0 > 0 with (a−δ0, a+δ0) ⊂ S. Our aim is to showlimx→a f(x) = f(a)
via theε-δ condition of Theorem 3.9.

Let ε > 0 be given. Applying the definition of continuity ata we can find
δ′ > 0 so that

x ∈ S, |x− a| < δ′ ⇒ |f(x)− f(a)| < ε.

We useδ′ because we now setδ = min(δ0, δ
′). Then

|x−a| < δ ⇒ |x−a| < δ0 and|x−a| < δ′ ⇒ x ∈ S and|x−a| < δ′ ⇒ |f(x)−f(a)| < ε.

By Theorem 3.9limx→a f(x) = f(a).
⇐: Assume now thatlimx→a f(x) = f(a). To show continuity ata, let ε > 0

be given. By Theorem 3.9 we can findδ > 0 so that

0 < |x− a| < δ ⇒ |f(x)− f(a)| < ε.
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The restriction0 < |x− a| is not needed since|f(x)− f(a)| < ε is certainly true
for x = a. Thus

|x− a| < δ ⇒ |f(x)− f(a)| < ε.

It follows that
x ∈ S, |x− a| < δ ⇒ |f(x)− f(a)| < ε,

which shows that theδ we got from the theorem satisfies the condition in the
definition of continuity.

Since we can find such aδ > 0 for each initialε > 0, we have shown thatf
must be continuous ata.

Definition 3.14. If S ⊂ R anda ∈ S, thena is called anisolated point ofS if
there is an open interval arounda that contains no point ofS apart froma.

That is, if there existc < a < d so that(c, d) ∩ S = {a}.

Lemma 3.15. If S ⊂ R, f : S → R anda ∈ S is an isolated point ofS, thenf is
automatically continuous ata.

Proof. Choosec < a < d with (c, d) ∩ S = {a}. Putδ = min(a− c, d− a) and
then

x ∈ S, |x−a| < δ ⇒ x ∈ (a−δ, a+δ)∩S ⊂ c, d)∩S = {a} ⇒ x = a ⇒ f(x)−f(a) = 0.

Thus for anyε > 0 and this choice ofδ > 0 we have

x ∈ S, |x− a| < δ ⇒ |f(x)− f(a)| < ε.

Example 3.16.Let S = (0, 1) ∪ {2}. Then2 is an isolated point ofS and every
other point is an interior point. Iff : S → R, thenf is automatically continuous
at 2 and continuity ata ∈ (0, 1) is equivalent tolimx→a f(x) = f(a).

At least at interior points, we can view the continuity condition as a stability
condition. A small change in the value ofx away fromx = a produces a small
change in the valuef(x) away fromf(a).

Theε-δ definition of continuity makes this more precise.ε is to be interpreted
as a precise meaning forf(x) to be close tof(a) and the idea is that, having fixed
that, there is a way to interpretx close thea (the distanceδ) so that whenx is
close toa in this sense thenf(x) is ‘close’ tof(a) in the desired sense.

For practical purposes where it is common to compute with decimal approxi-
mations, this is important because it says that if you do the calculations sufficiently
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accurately (though still not exactly) you will get an accurate value forf(a). If the
function is discontinuous ata, the smallest approximation made inx ∼= a could
produce a big change inf(x).

For points that are not interior points, the restriction thatx ∈ S can be at least
as important as the one thatx is ‘close’ toa. In the extreme case of an isolated
a ∈ S we see that continuity ata does not place any condition on the function.

Remark 3.17. We introduced limits of functions in Definition 3.5 by relying on
limits of sequences and we proved in Theorem 3.9 that an alternative approach
via anε-δ criterion would yield the same concept. For continuity (at a point) we
used a definition based onε-δ in 3.10. Now we show that a sequence approach
also works for continuity.

Theorem 3.18.Let S ⊂ R, f : S → R a function ada ∈ S a point. Thenf is
continuous ata if and only if the following holds

for each sequence(xn)∞n=1 of termsxn ∈ S with limn→∞ xn = a we
havelimn→∞ f(xn) = f(a).

Proof. ⇒: Assume now thatf is continuous and let(xn)∞n=1 be a sequence inS
converging toa. To showlimn→∞ f(xn) = f(a) by using the definition of limit
of a sequence directly, we takeε > 0 given and we claim there isN ∈ N so that

n ≥ N ⇒ |f(xn)− f(a)| < ε.

By continuity we know we can findδ > 0 so that

x ∈ S, |x− a| < δ ⇒ |f(x)− f(a)| < ε.

Using theε-N definition of what it means forlimn→∞ xn = a with the role of
positive number ‘ε’ taken byδ > 0 we deduce that there isN ∈ N so that

n ≥ N ⇒ |xn − a| < δ.

Putting these two statements together we have

n ≥ N ⇒ |xn − a| < δ andxn ∈ S ⇒ |f(xn)− f(a)| < ε,

and so we haveN as required.
As we can findN for eachε > 0 given, we have shownlimn→∞ f(xn) = f(a).
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⇐: Assume now that we have the information about sequences and we aim to
show thatf is continuous ata. Let ε > 0 be given and we claim there is some
δ > 0 so that

x ∈ S, |x− a| < δ ⇒ |f(x)− f(a)| < ε.

If that is not the case, thenδ = 1/n will not satisfy this and so there must
be somexn ∈ S so that|xn − a| < 1/n but |f(xn) − f(a)| ≥ ε. Chose such
an xn for eachn = 1, 2, 3, . . .. It is easy to see then thatlimn→∞ xn = a and
limn→∞ f(xn) 6= f(a) contradicting the assumption.

Soδ = 1/n must satisfy the desired implication (for somen ∈ N).

Definition 3.19. If S ⊂ R andf : S → R is a function, thenf is calledcontinuous
onS if f is continuous at each pointa ∈ S.

Corollary 3.20. LetS ⊂ R and letf, g: S → R be two continuous functions.

(i) The functionf + g: S → R defined by the rule(f + g)(x) = f(x) + g(x)
(for x ∈ S) is continuous.

In short ‘sums of continuous functions are continuous’.

(ii) The functionfg: S → R defined by the rule(fg)(x) = f(x)g(x) (for x ∈ S)
is continuous.

In short ‘products of continuous functions are continuous’.

(iii) If g(x) 6= 0 for eachx ∈ S, then the functionf
g
: S → R defined by the rule(

f
g

)
(x) = f(x)

g(x)
(for x ∈ S) is continuous.

In short ‘quotients of continuous functions are continuous (as long as the
denominator is never zero)’.

Proof. It is quite easy to use Theorem 3.18 to verify these claims.

(i) Let a ∈ S and let(xn)∞n=1 a be a sequence inS that converges toa. Then
limn→∞ f(xn) = f(a) andlimn→∞ g(xn) = g(a) by continuity off andg
(using Theorem 3.18). By the theorem on limits of sums of sequences (2.9),
we deducelimn→∞ f(xn)+g(xn) = f(a)+g(a) and so (using Theorem 3.18
again)f + g is continuous ata.

Since this is true for alla ∈ S, we havef + g continuous (onS).

(ii)
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(iii) The proofs are essentially the same.

Notation 3.21. If f : S → R is a function andT ⊂ S, then therestriction off to
T is the functionf |T : T → R given by the rule(f |T )(x) = f(x) for x ∈ T .

We can think of the restriction as forgetting about some of the valuesf(x) of
the original functionsf (and only retaining those wherex ∈ T ). In terms of the
graphs, the graph of the restriction would be just part of the graph off .

It is very easy to see from either the definition of continuity or Theorem 3.18
that the restriction of a continuous function will be continuous. More precisely,
a ∈ T ⊂ S andf : S → R is continuous ata, thenf |T is continuous ata. Starting
with ε > 0 given, continuity off ata says there isδ > 0 so that

x ∈ S, |x− a| < δ ⇒ |f(x)− f(a)| < ε.

Thus

x ∈ T, |x− a| < δ ⇒ x ∈ S, |x− a| < δ ⇒ |f(x)− f(a)| < ε

and so
x ∈ T, |x− a| < δ ⇒ |(f |T )(x)− (f |T )(a)| < ε.

Definition 3.22. If S, T ⊂ R, f : S → T andg: T → R, then thecompositionof
f andg (also known asg afterf ) is the functiong ◦ f : S → R given by the rule
(g ◦ f)(x) = g(f(x)) for x ∈ S.

We pronounceg ◦ f as ‘g circlef ’.
It is possible to defineg ◦ f when the co-domain off is not the domain ofg,

if we ask just thatf(S) ⊂ T (the range off is contained in the domain ofg), but
there are various abstract settings where this in not the way to do things and so we
will stick officially to the definition as given.

There is a technical difference between a functionf : S → T whereT ⊂ R
and the functions: S → R and: S → f(S) given by the same rulex 7→ f(x). For
example surjectivity can depend on which function we consider (which co-domain
we take). However, in many ways the differences are technical.

We do consider a functionf : S → T to be continuous when the (almost same)
function: S → R (x 7→ f(x)) is continuous.

Theorem 3.23. Let S, T ⊂ R be subsets, andf : S → T and g: T → R two
continuous functions. Then thecompositionof g ◦ f : S → R is continuous.



16 Chapter 3: Limits of functions

Proof. Fix a ∈ S and then we will show thatg ◦ f is continuous ata via the
sequence criterion Theorem 3.18. Let(xn)∞n=1 be a sequence inS that converge
to a (that is withlimn→∞ xn = a). Thenlimn→∞ f(xn) = f(a) by continuity of
f ata.

Now for yn = f(xn), (yn)∞n=1 is a sequence inT that converges tob = f(a) ∈
T . By continuity ofg at b (and Theorem 3.18 again) we havelimn→∞ g(yn) =
g(b). That is

lim
n→∞

g(f(xn)) = g(f(a)),

or
lim

n→∞
(g ◦ f)(xn) = (g ◦ f)(a).

As this is true for all sequences(xn)∞n=1 in S converging toa, it implies thatg ◦ f
is continuous ata.

As this holds for eacha ∈ S, it follows thatg ◦ f is continuous.

Remark 3.24. The idea of using different variables for different functions can
help to keep track of compositions. If we writey = f(x) andz = g(y), then
z = g(y) = g(f(x)) is almost automatic.

Alternatively, we may useu = f(x) andy = g(u) with y = g(f(x)).

Remark 3.25. We have 2 ways to characterise continuity of a functionf : S →
R at any pointa ∈ S — the originalε-δ definition and the sequence criterion
Theorem 3.18.

For interior pointsa ∈ S, we also have the criterionlimx→a f(x) = f(a) by
Proposition 3.13.

We can also use a variation of a limit criterion at either end of a closed interval.
If f : [a, b] → C we can characterise continuity ata via a one-sided limit (and we
can do something similar atb).

Definition 3.26. 1. Letf : S → R be defined on a setS that includes and open
interval (a, b) with a < b. Let ` ∈ R. Then we say that theright hand limit
limx→a+ f(x) is ` if the followingε-δ criterion holds:

For eachε > 0 it is possible to findδ > 0 so that

0 < x− a < δ ⇒ |f(x)− `| < ε.

2. Let f : S → R be defined on a setS that includes and open interval(c, a)
with c < a. Let` ∈ R. Then we say that theleft hand limit limx→a− f(x) is
` if the followingε-δ criterion holds:
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For eachε > 0 it is possible to findδ > 0 so that

0 < a− x < δ ⇒ |f(x)− `| < ε.

Proposition 3.27.Letf : [a, b] → R be a function on an interval wherea < b.

(i) f is continuous ata if and only iflimx→a+ f(x) = f(a).

(ii) f is continuous atb if and only iflimx→b− f(x) = f(b).

Proof. (of (i) as (ii) is similar).
Continuity off ata means that

For eachε > 0 it is possible to findδ > 0 so that

x ∈ [a, b], |x− a| < δ ⇒ |f(x)− f(a)| < ε.

The criterion forlimx→a+ f(x) = f(a) has two differences. There is nox ∈ [a, b]
andx = a is not considered. However the point about allowingx = a is not a
problem since whenx = a we automatically have|f(x)− f(a)| = 0 < ε.

Notice that

x ∈ [a, b], |x− a| < δ ⇒ 0 ≤ |x− a| < δ

and if we assumeδ < b− a, we can say

0 ≤ |x− a| < δ ⇒ x ∈ [a, b], |x− a| < δ

To make a formal proof we need to show 2 things.

f is continuous ata⇒ limx→a+ f(x) = f(a). :

Start withε > 0. From continuity ata find δ > 0 so that

x ∈ [a, b], |x− a| < δ ⇒ |f(x)− f(a)| < ε.

Takeδ0 = min(δ, b− a) and then we haveδ0 > 0 and

0 < x− a < δ0 ⇒ x ∈ [a, b], |x− a| < δ

⇒ |f(x)− f(a)| < ε

so that we have shown that the criterion forlimx→a+ f(x) = f(a) holds.
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limx→a+ f(x) = f(a)⇒ f is continuous ata. :

Start withε > 0. Fromlimx→a+ f(x) = f(a), we can findδ > 0 so that

0 < x− a < δ ⇒ |f(x)− f(a)| < ε.

Now,

x ∈ [a, b], |x− a| < δ ⇒ 0 ≤ x− a < δ ⇒ |f(x)− f(a)| < ε

because it is true forx = a as well as for0 < x − a < δ. Thusf is
continuous ata.
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