Chapter 2: Sequences | (121 2004-05)

We will discuss (infinite) sequences (of numbers) and limits of them, but we
will postpone several aspects to later. We will also leave series to later.

Definition 2.1. A functionwith domaina setA and co-domain (or target) a sét
is a rule that assigns one and only oelement € B to eachelement: € A.

We usually writef: A — B to indicate that we are discussing a function called
f with domainA and co-domairB. We normally writef (a) for the element € B
that is associated to € A by the rulef.

We will have more to say about functions later, and they are also discussed in
course 111.

Definition 2.2. A sequencéan infinite sequence) of numbers is a functioil —
R.

In contrast to the usual notation(n) for function values, it is traditional to
denotex(n) by the subscript notatiom,, when dealing with sequences. We will
often write(xz,,)° , for a sequence and this is because we think of the values of
the sequence as forming an infinite list

L1, T2, T3, ...

Examples 2.3. (i) z,, = n? gives the sequende,,)>>, = (n?)>2, which can
be listed as
12,22 3% 4% .. =1,4,9,16,25,...

(i) z, = n? gives the sequende,,)>>, = ((—1)").~, which can be listed as

~1,1,-1,1,—1,...

(i) (1) | isthe sequence
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Remark 2.4. Recall that forz,y € R, we can interpretz — y| geometrically
as thedistancebetweenr andy on the number line. Later there will be courses

about distances in the abstract and then this will be the definition of one possible
distance to use OR.
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For now we can think of it as the obvious definition of distance on the number
line and use it as a guide to understanding what we are doing. It will not actually
be an essential ingredient in any proof or definition that we give.

The idea of a limit of a sequende,,)> , being a numbef € R is what we
want to introduce now. We want to describe the notion thais getting “closer
and closer” to/ asn gets “larger and larger” in a way that is unambiguous and
gives the right concept.

To make the notion precise we have to be exact about what ‘close’ means
and what ‘large’ means. Our approach is to say that ‘close’ means distance less
than some positive quantity. This is then combined with the idea the that positive
quantity can be fixed to any positive value so as to accommodate different notions
of ‘small distance’. It is usual to use the notatio(Greek letter epsilon) for this
positive quantity.

We also have to have a notion of ‘large’ and for this we choose a int¥ger
and say that any € N with n > N will be considered large.

Soz, ‘closer and closer’ td will become|z, — ¢| < ¢ andn getting larger
and larger will mean alh > N. It will be important though to understand the
logic.

Definition 2.5. If (z,,)5°, is a sequence of real numbers ahd R, then we say
that/ is alimit of the sequence if the following is true:

For eache > 0 it is possible to findV € N so that

|z, — | < e holds for everyn € Nwithn > N.

We call a sequencer,, )22, convergentf it has a limit/ € R.

The logic is important to grasp. No matter how small (or large to begin
with, we must be able to find/ so thatn > N is enough to guarantée, — /| is
smaller thare.

It is not stated in the definition thathas to be in any sense small, but it is
not hard to see that any that works for one will also work if you took a larger
e. So makings smaller (while still keeping > 0) makes it more challenging to
produceN that works.

You could think of it as a game you have to be sure you can win. Your op-
ponent chooses > 0 and you have to be sure you can find rthat works no
matter how malicious your opponent is in choosing really small0.
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We have avoided deciding what small should be by allowing for any possible
interpretation of ‘small’ distance. And we have avoided describing ‘large’ in any
absolute way by saying only that it means ‘allarger than something’. We have
to be able to come up with a suitable interpretation of large (a suiféldeN) no
matter what > 0 is (no matter what ‘small distance’ is fixed for us).

Examples 2.6. (i) The sequencél)™ has limit0.
Proof. We are dealing with the sequenge,)° , wherex,, = 1/n and? =
0. The aim then is to show

For eache > 0 it is possible to findV € N so that

l — 0‘ < ¢ holds for everyn € Nwithn > N.
n

In all these proofs we have to look carefully at what is required and then
figure out how to do it.

Start withe > 0 fixed (but we are not going to make any assumption about
how it has been fixed — it is fixed for now but could be any positive quan-

tity).

We want to ensure
1

n
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and we want to do this by makinglarge.

What we know (Proposition 1.18 (ii)) is that there is sofiee N with
% < . Choose such a. Then for anyn > N we have

1
N

1 ' 1
Z—0l==<
n n

<€

Thus we have demonstrated that it is always possible to Aing N as
required. (Always, no matter what > 0 we start with.) This shows that
the condition of the definition of limit is satisfied and so O is a limit of the
sequencél/n)% ;. O

(i) If =, = 1 for eachn then 1 is a limit of the sequende,,)>>; = (1)>2,
(known as the constant sequence 1).
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Proof. Our aim is to show:
For eache > 0 it is possible to findV € N so that

|z, — 1] < € holds for everyn € N with n > N.

As before, start witls > 0 given but arbitrary. If we can find/ for thise we
can do it for any: > 0 because we have not assumed anything special about
e (other thare > 0).

In this cas@z, — 1| = |1 — 1| = 0 < ¢ for everyn. We can just takevV = 1.
Then we have
|z, — 1| = 0 < ¢ holds for everyn > 1

and the criterion in the definition of limit is satisfied. O

2

_n-
n24+1"

the sequencer,, ), has limit 0.

n=1
Proof. As before, start witlz > 0 given but arbitrary. Our aim is to show:
It is possible to findV € N so that

|z, — 1| < € holds for everyn € N withn > N.

Consider
n2 .
nz+1 a

[z, —1| =

—1‘ 1

B <1<1
T n24+1 0?2 T on

n*—(n*+1)|
n?+1 Cn2+1

If we chooseN € N large enough so th% < ¢ (as we know we can do by
Proposition 1.18(ii)), we will then have for eveny> N

| 1|<1<1<
Ty — - S = 19

n N
and so

|z, — 1| <eforalln > N.

We have shown how to produc¢é € N that works (for thes > 0 we began
with).

Sincee > 0 is arbitrary we have established that we can fivicho matter
whate > 0 is. So we have established that the criterion of the definition
holds (for 1 to be a limit). ]
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Proposition 2.7. A sequencéz,,)>° , of numbers can have at most one limit (in
R).

Proof. The claim is then that i¥ and ¢’ are two limits of the same sequence
()5, thenl = 7'.

The method of proof is to come up with a notion of ‘close’ that eliminates the
possibility ¢ # ¢'.

If ¢ # ¢ thene = |¢ — ('|/3 is a valid choice (that is > 0). Soif ¢ is a limit
of the sequence, then we must be able to fing N so that

|z, — ¢] < e holds for alln > N.
But, since/’ is also a limit, we must be able to fimd’ € N so that
|z, — {'| < e holds for alln > N'.
If we taken = max(N, N’) then we have both
|z, — (| < eand|z, — (| <e.

Using the triangle inequality (on the distance betwéamd/?’ via z,, for this n)
we get a contradiction as follows. We have

=0 =l —x,) + (2, = O)| < |0 — 20| + |20 — £

and so 5
|€—€’\g\xn—ﬁl—i—]:cn—f’]<8—|—€:§|€—€’\

But this is impossible as it implies (multiplying By|¢ — ¢'| > 0) that3 < 2.
This contradiction arose fromth+£ ¢'. So we must havé = ¢’ and the sequence
cannot have two different limits. O

Notation 2.8. Now that we know limits are unique (if they exist) we can be sure
no confusion will arise if we introduce a notation

lim z,
to stand for the limit of a convergent sequence. The point is that if there could be
several limits, then using the same notation for them all could cause confusion or
mislead you into thinking that the same number is meant when it is used a second
time.
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What is perhaps slightly dangerous is to use the notdtiap .., x,, when
we are still unsure whether the sequence is convergent or not. So we may quite
often uselim,, ., x,, While discussing the existence of the limit or even write
“lim,, . x,, does not exist” when we conclude that the sequence we are dealing
with is not a convergent sequence.

The next theorem allows us to avoid using the definition of limit directly in
many cases. We still need some examples which have been worked out via the
definition, but we can use the theorem to work out many other limits.

Theorem 2.9.Let(z,,)>, and(y,)>2 , be convergent sequences With,, ., x,, =
¢y andlim,,_,o z,, = ¢>. Then
(In words: the limit of a sum is the sum of the limits (provided the individual
limits exist).)
(i) If « € R (constant), thehim,, ., ax, = af;.

(Multiplying each term of a convergent sequence by a constant produces
a new convergent sequence where the new limit is that constant times the
original limit.)

(“I) llmnaoo(xnyn) = lily

(The limit of a product is the product of the limits (provided the individual
limits exist).)

(iv) If ¢35 # 0 then there exists, € N so thaty,, # 0 for all n > ny and also

(The limit of a quotient is the quotient of the limits provided the denominator
limit is not O (and the individual limits exist).)

Proof. (i) Start withe > 0 given. Our aim is to find (or show that it is possible
to find) N € N so that

|(z, + yn) — (€1 + £5)| < € holds for alln > N.
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We know that we can find/; € N so that
|2y — 0] < g holds for alln > N,

(using the definition ofim,, ., x,, = ¢;). We can also findV, € N so that
[yn — lo] < % holds for alln > Ns.

Take N = max(N;, Ny) and then we can say that for any> N we must
have bothV > N; andn > N,. So, for suck, we have bothe, — (1] < /2
and|y, — (o] < /2. it follows that, forn > N, we have

[(@n +yn) = (L + )] = (20 —6) + (yn — £)]
(using the triangle inequality)
g

< E4E,
2 2 7

Thus we can findV as desired and we can do it no matter what 0 we
start with. So we have established (i).

(ii) First we dispose of the case = 0. In that casexz,, = 0 is the constant
sequence 0 and so its limitis= «/;. We have established (ii) far = 0.

Whena # 0, we start withe > 0 given. Our aim is to show we can find
N € N so that
lax, — ali| <eforalln > N.

To do this we examine the quantityz,, — /| that is supposed to be ‘small’
(in the sense ok ¢) for n large. Notice

lax, —aly| = |a(x, — 0)] = |a||z, — 4.
We know we can findV € N so that

|z, — 4] < iforallnz N.

|

For this N we see that

|y — aby| = o] |z, — 01] < mﬁ — cforalln > N.
(6%

Thus N has the desired property. As we can do this no matter what0
we start with, we have established (ii) f@r# 0.
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(i) We first show this for the casé = 0. Using the fact thatim,, .. y, = /s,
we claim first that there must be a numbérso that|y,,| < M for all n.
Using thes-N definition of the limit with =" = 1 to find Ny € N so that

lyn — £2| < 1foralln > Nj.
It follows that, forn > N,
Ynl = [(yn — €2) + Lo < [y — o] + [la] <1+ |6

(using the triangle inequality). If we now take to be the maximum of
the finitely many numbersy|, vz, - -, [Yno—1|, 1 + |¢2|, we can see that
lyn| < M for all n.

Using this fact, we can see how to guaranteethat, —¢1 (5| = |z,y,—0| =
|z, y,| 1S small forn large.

Start withe > 0 given. We know thatz,y, — (12| = |z.||ys| < M|z,
and by the fact thdim,,_.., z,, = 0 we can findV € N so that

20 — O] = |7a] < % forall n > N.
For this choice ofV we have
Tt — (1l = |Tallyn] < M|z,| < M% —cforalln > N.

Since we can find sucV no matter what > 0 is given, we see that we
have shown (iii) in the casg = 0.

The general case (any valueffnow) can be deduced from this because
By what we have just shown

lim (z, — 1)y, =0

(becauséim,, .. (z, — ¢1) = lim, .oz, — lim,, .o {1 = ¢; — ¢; = 0 by
part (i)). Alsolim,, .., {1y, = {143 by (ii). So, using (i),

n—oo n—oo
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(iv) Firstwe establish that fot largey,, # 0 (using the assumptiofy # 0).

Chooses = |l5|/2 in thee-N definition oflim,,_.. y, = ¢». We can find
ng € N so that

14
|yn—€2]<5:%forallnzno.

But for suchn > ny we then have

14 14
ol = V(g — ) o] 2 1061~y — o] > 1] — 121 = 1
using a variation of the triangle inequality to be found in Exercises 2 (ques-

tion 2(a)).

From this we can see that,/y,, makes perfect sense far >

no. That leaves us with the question of what/y,, would mean

if y, = 0. Of course, it would not mean anything for such
and it seems strange to refer lim,, ... z,/y, when there is a
possibility that the quotient sequenge,/v,,)>° , is not properly
specified. We could add the hypothesis that# 0 for all n
and strictly that is what we should do. However, the problem can
only arise (if it arises at all) forn. < no and there are then only

a finite number of such. As far as the limit of a sequence is
concerned, changing a finite number of terms will not affect the
limit (because we can always ensure that #eve take in the
definition of the limit is bigger than any finite number ofwe
want to avoid). On these grounds we could live with the doubt
over how to deal with a finite number of termg/y,, wherey,, =

0.

Usually that is done, but we could also just insist thais always
nonzero.

Now, we have not only showed that (from the assumptions mggd€)0 for

n > ng (someny), we have shown more that there is a number |(5] /2 >

0 andny € N so that|y,,| > ¢ for all n > ng. This allows us to estimate (for

n > ng)

62 — Yn
ynEQ

11|

Yn 62

Cyalle] T ]
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We can use this estimate to shéw,, .., y, = 1/¢5. Start withe > 0 given
and chooséV; € N so that

iy — Lo| < c|ls|e foralln > N

(as we know we can do becausé,|c > 0 by the definition ofim,, .. y, =
2}

Now takeN = max(ng, N1). Forn > N we have botm > ny andn > Ny,
and therefore we have both

1 1

Un €2

12—yl _ v — o

and|y, — ls] < cllsle.
S TR [y — La] < clbs]e

Thus, for alln > N we have

1 1

Un €2

C|€2|E .
clls]

Since we can find suc € N for any givenz > 0, we have shown

1
lim — = —.

We can deduce (iv) from this using (iii) as follows

n 1 1 7
lim In _ lim z,— =/0— = L

_n?_
TL2+1’

Examples 2.10. (i) For z,, = the sequencer,, )22, has limit 0.

n=1

Proof. We did this same example already using a direct approach (the defi-
nition alone) and now we can redo it using the theorem above.

‘ n2 . n2 /n2
lim = lim ———
n—oo 2 + 1 n—co (n? + 1)/n?

I 1
= lim
n—oo | + 1/712
1
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lim,, oo 1
lim,, o (1 + (1/n)?)
(by Theorem 2.9(iv))
1
lim,, oo 1 4 lim, o (1/n)?
(by Theorem 2.9(i))
1
1+ (limy_oo 1/n)?
(by Theorem 2.9(iii))

]

(i) Note that the same technique can be used to work out many similar examples

such as
o3t 42— 11ln+12
lim

n—o0 n®4+2n+1
(start by dividing above and below by the largest powex

(iii)y For x, = (—1)", the sequencer, )5, has no limit (is not convergent).

Proof. The theorem is no help for this. We hae to go back to the definition of
limit. Suppose on the contrary thigin,, ...(—1)" = ¢ for somel € R. The
idea is to choose an interpretation of ‘closé’tavhich could not be satisfied
simultaneously by both 1 andl. Takes = 1/2 in thee-N criterion and we
deduce that there must Bé € N so that

|[(-1)" - <e=1/2foralln > N.

Choosingn = N andn = N + 1 (one of which must be odd and the other
even) we deduce that both

1 1
(1) —¢| < 5 and|1 —/| < 3
Then from the triangle inequality we see we would have to have
1 1
=)= -0+ =)< -f+ - (-] <5+5=1

and this gives the contradictian< 1.
So there can be no limitfor this sequence. H
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Definition 2.11. If (z,,)?2, is sequence, then it is calledraonotone increasing
sequencd z, < x,,1 holds for eacm € N.

This means that; < z, < z3 < -- -, and the terrmon-decreasing perhaps
more descriptive. If we mean really increasing, we use the strictly monotone
increasing— this means,, < x,,,, for eachn € N.

We can similarly definenonotone decreasing sequerfedich means:,, >
x,41 holds for eachn € N. Againnon-increasingnay be a better term and the
termstrictly monotone decreasingused forr,, > x,,1 forn € N(orz; < xg >
T3 > .-

A sequencéz,,)> , is calledmonotondf it is eithermonotone increasingr
monotone decreasing.

Examples 2.12.The sequencén?), is (strictly) monotone increasing while
(1)" | is (strictly) monotone decreasing.

Any constant sequence)°° , is both monotone increasing and monotone de-
creasing.

The sequencer,, ), with z, = (—1)" is not monotone.

Definition 2.13. If (x,,)72, is sequence, then it is calldtbunded abové the set
of values{z,, : n € N} is bounded above. (That means, if there is R so that
x, < u holds for alln € N.)

The sequence is calldabunded belowf the set{z, : n € N} is bounded
below.

The sequence is calldzbundedf it is both bounded abovand bounded be-
low.

Theorem 2.14.If a monotone sequence is bounded then it is convergent (has a
limitin R).

Proof. We take the case of a monotone increasing bounded sequence (as the case
if a monotone decreasing bounded sequence can be done in an analogous way or
deduced from the fact that {fz,,)>° , is monotone decreasing and bounded then
the sequencé-z,)%° , is monotone increasing and bounded).

Let (z,)5°, be monotone increasing and bounded (above).ulLetlub{z, :
n € N} (which exists by the least upper bound principle (P13) because the set is
nonempty and bounded).

We showlim,, . x,, = u.

Start withe > 0 given. Then.—e < u = the least upper bound, and so cannot
be an upper bound itself. To say itnst an upper bound means itnet true that
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x, < u — ¢ holds for alln € N. But that means there is at least afie= N where
xy > u — €. As the sequence is monotone increastiRg< zyi1 < Tyio < -+ -,
we can see that, > v — ¢ for all n > N* Sincez,, < u = and upper bound, we
have now

u—e < x, <uholds foralln > N

It follows that—varepsilon < x,, —u < 0 and|z,, — u| = —(z,, — u) < ¢ for all
n > N.
As we can find suclv for eache > 0, we have verifiedim,,_,. x,, = u. 0O

By a (positive) decimal fraction we mean a numbet; d,ds . . . for a posssibly
infinite sequence,, d», . .. of digits taken fromd; € {0,1,2,3,4,5,6,7,8,9}.
When the decimal terminates it means

j=1

(and is actually a rational number). For infinite decimals we need a definition of
what they mean. We define

(if the limit exists — but it does always exist as we will show in a moment). We
get arbitrary decimals by adding a whole number (positive integer) to a decimal
of this type and then possibly multiply byl (to get neagtives).

Corollary 2.15. Every decimal represents a real number.

nody

Proof. The point is that the limiim, .. > ;_, {3 always exists. Buts, =

n d; . .
Zj:l ﬁ IS @ monotone INncreasing sequence because

n+1
dj dn+1
Tpil = 1—Oj:ggn+ Tonit > Ty,

J=1

Itis also bounded above because

9 .
xngzl—mzo.99...9 (n nines
j=1

We could show by induction oji€ N thatxx;—1 > u —  holds for allj € N.
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andsar,, <1—-0.00...1< 1.
Solim,, ., x,, does exist by Theorem 2.14. O

Example 2.16.The decimal with repeating nin@099 ... = 1.

Proof. Takingd; = 9 for all j we see that

~d; = 9 1
p=y =3 T =099...9=1-000...1=1—
. 10 10 107

Sincel0™ > n we can show quite easily thktn,, ... 7= = 0 andlim,,_.., z, =
1. O]

Definition 2.17. If (x,,)22, is sequence, then by subsequencese mean a se-
quence(y;)2, which is of the formy; = x,,, wheren; < ny < ng < ---isa
strictly monotone increasing sequence of natural numbers).

To be really precise the subsequence is not just the sequengeys, . ..
but also the mag — n; which determines the indices; used to pick out the
subsequence.

This if z,, = (—1)", then the constant sequence wjth=1forj = 1,2,...is
a subsequence in lost of different ways. For example- 25 works but so does
n; = 47. The fact that the values samegl, 1, ... can be picked out in more than
one way is almost never an issue.

For x, = 1/n, the sequence with termg = 1/(j?) is a subsequence (with

nj = jz)

Proposition 2.18. If lim,, ...z, = ¢ and (z,,)32, is any subsequence, then

lim; oo T, = ¢

Proof. An observation we will use is that ifn;)52, is a strictly monotone in-
creasing sequence of natural numbers, then> j for eachj € N. This we
can check by inductionn; > 1 is true. Assuming:; > j i true, we can de-
duce fromn; < n;.; and the fact that;,n; ., € Nthatn; + 1 < n;;,. Hence
J+1<n;+1<nj.

Now lete > 0 be given. Sincéim,,_. ., x,, = ¢ we can findNV € N so that

|z, — ¢|] < e holds for alln > N.

But thenj > N impliesn; > j > N and so|z,, — ¢| < . This shows
lim; oo T, = /. O
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Theorem 2.19.(Bolzano Weierstrass Theorem)4f,)> , is a bounded sequence
in R, then it has a convergent subsequence (a subsequence with a [iR)it in

The proof is mostly based on the following lemma.
Lemma 2.20. Every sequencer,, )2 ; has a monotone subsequence.

Proof. The key idea in the proof is the idea opaak pointfor the sequence (the
term peaking index might be better). We say that N is a peak point of the
sequencéxz,, ), ifitis true that

Tn >y forallm e Nwithm > n.

Either the sequencer,, ) ; has infinitely many peak points or it has only a
finite number.

If it has infinitely many, leth; = the smallest peak point, = the smallest
peak point withn, > n; and so on. We define;; inductively (or recursively) as
the smallest peak point wherg,, > n;. Thenz,, > x,,, , because, is a peak
point. Henceg(z,,;)52, is @ monotone decreasing subsequende o2 ;.

If on the other hand there are only a finite number of peak points, there is
ny € N with n; > all peak points. Since; is not itself a peak point, there is
ny > ny With z,,, < x,,,. Nextn, is not a peak point (bigger than all peak points)
and so there i3 > ny with z,,, < z,,. In this way we can pick; < ny <
ng < ---Withn; < n;,, andz,;, < x,,,, foreachj € N, (acn].)j.‘;l is a monotone
increasing subsequence. O]

Proof. (of Theorem 2.19) Starting with a bounded sequeficg> ,, we use
Lemma 2.20 to find a monotone subsequenee)s2,;.

Because the original sequence is bounded, there are nuimldérs R so that
L <z, < U foreachn € N. It follows thatL < z,, < U for each; € N and
so the subsequence,,; )52, is bounded as well as monotone. By Theorem 2.14
lim;_, o @, €xists inR. [l

December 6, 2004



