
Chapter 2: Sequences I (121 2004–05)

We will discuss (infinite) sequences (of numbers) and limits of them, but we
will postpone several aspects to later. We will also leave series to later.

Definition 2.1. A functionwith domaina setA and co-domain (or target) a setB
is a rule that assigns one and only oneelementb ∈ B to eachelementa ∈ A.

We usually writef : A → B to indicate that we are discussing a function called
f with domainA and co-domainB. We normally writef(a) for the elementb ∈ B
that is associated toa ∈ A by the rulef .

We will have more to say about functions later, and they are also discussed in
course 111.

Definition 2.2. A sequence(an infinite sequence) of numbers is a functionx: N →
R.

In contrast to the usual notationx(n) for function values, it is traditional to
denotex(n) by the subscript notationxn when dealing with sequences. We will
often write(xn)∞n=1 for a sequence and this is because we think of the values of
the sequence as forming an infinite list

x1, x2, x3, . . .

Examples 2.3. (i) xn = n2 gives the sequence(xn)∞n=1 = (n2)∞n=1 which can
be listed as

12, 22, 32, 42, . . . = 1, 4, 9, 16, 25, . . .

(ii) xn = n2 gives the sequence(xn)∞n=1 = ((−1)n)∞n=1 which can be listed as

−1, 1,−1, 1,−1, . . .

(iii)
(

1
n

)∞
n=1

is the sequence

1,
1

2
,
1

3
,
1

4
, . . .

Remark 2.4. Recall that forx, y ∈ R, we can interpret|x − y| geometrically
as thedistancebetweenx andy on the number line. Later there will be courses
about distances in the abstract and then this will be the definition of one possible
distance to use onR.
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For now we can think of it as the obvious definition of distance on the number
line and use it as a guide to understanding what we are doing. It will not actually
be an essential ingredient in any proof or definition that we give.

The idea of a limit of a sequence(xn)∞n=1 being a number̀ ∈ R is what we
want to introduce now. We want to describe the notion thatxn is getting “closer
and closer” tò asn gets “larger and larger” in a way that is unambiguous and
gives the right concept.

To make the notion precise we have to be exact about what ‘close’ means
and what ‘large’ means. Our approach is to say that ‘close’ means distance less
than some positive quantity. This is then combined with the idea the that positive
quantity can be fixed to any positive value so as to accommodate different notions
of ‘small distance’. It is usual to use the notationε (Greek letter epsilon) for this
positive quantity.

We also have to have a notion of ‘large’ and for this we choose a integerN
and say that anyn ∈ N with n ≥ N will be considered large.

Soxn ‘closer and closer’ tò will become|xn − `| < ε andn getting larger
and larger will mean alln ≥ N . It will be important though to understand the
logic.

Definition 2.5. If (xn)∞n=1 is a sequence of real numbers and` ∈ R, then we say
that ` is a limit of the sequence if the following is true:

For eachε > 0 it is possible to findN ∈ N so that

|xn − `| < ε holds for everyn ∈ N with n ≥ N.

We call a sequence(xn)∞n=1 convergentif it has a limit ` ∈ R.

The logic is important to grasp. No matter how small (or large)ε is to begin
with, we must be able to findN so thatn ≥ N is enough to guarantee|xn − `| is
smaller thanε.

It is not stated in the definition thatε has to be in any sense small, but it is
not hard to see that anyN that works for oneε will also work if you took a larger
ε. So makingε smaller (while still keepingε > 0) makes it more challenging to
produceN that works.

You could think of it as a game you have to be sure you can win. Your op-
ponent choosesε > 0 and you have to be sure you can find anN that works no
matter how malicious your opponent is in choosing really smallε > 0.
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We have avoided deciding what small should be by allowing for any possible
interpretation of ‘small’ distance. And we have avoided describing ‘large’ in any
absolute way by saying only that it means ‘alln larger than something’. We have
to be able to come up with a suitable interpretation of large (a suitableN ∈ N) no
matter whatε > 0 is (no matter what ‘small distance’ is fixed for us).

Examples 2.6. (i) The sequence
(

1
n

)∞
n=1

has limit0.

Proof. We are dealing with the sequence(xn)∞n=1 wherexn = 1/n and` =
0. The aim then is to show

For eachε > 0 it is possible to findN ∈ N so that∣∣∣∣ 1n − 0

∣∣∣∣ < ε holds for everyn ∈ N with n ≥ N.

In all these proofs we have to look carefully at what is required and then
figure out how to do it.

Start withε > 0 fixed (but we are not going to make any assumption about
how it has been fixed — it is fixed for now but could be any positive quan-
tity).

We want to ensure ∣∣∣∣ 1n − 0

∣∣∣∣ =

∣∣∣∣ 1n
∣∣∣∣ =

1

n
< ε

and we want to do this by makingn large.

What we know (Proposition 1.18 (ii)) is that there is someN ∈ N with
1
N

< ε. Choose such anN . Then for anyn ≥ N we have∣∣∣∣ 1n − 0

∣∣∣∣ =
1

n
≤ 1

N
< ε

Thus we have demonstrated that it is always possible to findN ∈ N as
required. (Always, no matter whatε > 0 we start with.) This shows that
the condition of the definition of limit is satisfied and so 0 is a limit of the
sequence(1/n)∞n=1.

(ii) If xn = 1 for eachn then 1 is a limit of the sequence(xn)∞n=1 = (1)∞n=1

(known as the constant sequence 1).
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Proof. Our aim is to show:

For eachε > 0 it is possible to findN ∈ N so that

|xn − 1| < ε holds for everyn ∈ N with n ≥ N.

As before, start withε > 0 given but arbitrary. If we can findN for thisε we
can do it for anyε > 0 because we have not assumed anything special about
ε (other thanε > 0).

In this case|xn − 1| = |1− 1| = 0 < ε for everyn. We can just takeN = 1.
Then we have

|xn − 1| = 0 < ε holds for everyn ≥ 1

and the criterion in the definition of limit is satisfied.

(iii) For xn = n2

n2+1
, the sequence(xn)∞n=1 has limit 0.

Proof. As before, start withε > 0 given but arbitrary. Our aim is to show:

It is possible to findN ∈ N so that

|xn − 1| < ε holds for everyn ∈ N with n ≥ N.

Consider

|xn−1| =
∣∣∣∣ n2

n2 + 1
− 1

∣∣∣∣ =

∣∣∣∣n2 − (n2 + 1)

n2 + 1

∣∣∣∣ =

∣∣∣∣ −1

n2 + 1

∣∣∣∣ =
1

n2 + 1
<

1

n2
≤ 1

n

If we chooseN ∈ N large enough so that1
N

< ε (as we know we can do by
Proposition 1.18(ii)), we will then have for everyn ≥ N

|xn − 1| < 1

n
≤ 1

N
< ε

and so
|xn − 1| < ε for all n ≥ N.

We have shown how to produceN ∈ N that works (for theε > 0 we began
with).

Sinceε > 0 is arbitrary we have established that we can findN no matter
what ε > 0 is. So we have established that the criterion of the definition
holds (for 1 to be a limit).
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Proposition 2.7. A sequence(xn)∞n=1 of numbers can have at most one limit (in
R).

Proof. The claim is then that if̀ and `′ are two limits of the same sequence
(xn)∞n=1, then` = `′.

The method of proof is to come up with a notion of ‘close’ that eliminates the
possibility` 6= `′.

If ` 6= `′ thenε = |` − `′|/3 is a valid choice (that isε > 0). So if ` is a limit
of the sequence, then we must be able to findN ∈ N so that

|xn − `| < ε holds for alln ≥ N.

But, sincè ′ is also a limit, we must be able to findN ′ ∈ N so that

|xn − `′| < ε holds for alln ≥ N ′.

If we taken = max(N, N ′) then we have both

|xn − `| < ε and|xn − `′| < ε.

Using the triangle inequality (on the distance between` and`′ via xn for this n)
we get a contradiction as follows. We have

|`− `′| = |(`− xn) + (xn − `′)| ≤ |`− xn|+ |xn − `′|

and so

|`− `′| ≤ |xn − `|+ |xn − `′| < ε + ε =
2

3
|`− `′|

But this is impossible as it implies (multiplying by3/|`− `′| > 0) that3 < 2.
This contradiction arose from̀6= `′. So we must havè= `′ and the sequence

cannot have two different limits.

Notation 2.8. Now that we know limits are unique (if they exist) we can be sure
no confusion will arise if we introduce a notation

lim
n→∞

xn

to stand for the limit̀ of a convergent sequence. The point is that if there could be
several limits, then using the same notation for them all could cause confusion or
mislead you into thinking that the same number is meant when it is used a second
time.
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What is perhaps slightly dangerous is to use the notationlimn→∞ xn when
we are still unsure whether the sequence is convergent or not. So we may quite
often uselimn→∞ xn while discussing the existence of the limit or even write
“ limn→∞ xn does not exist” when we conclude that the sequence we are dealing
with is not a convergent sequence.

The next theorem allows us to avoid using the definition of limit directly in
many cases. We still need some examples which have been worked out via the
definition, but we can use the theorem to work out many other limits.

Theorem 2.9.Let(xn)∞n=1 and(yn)∞n=1 be convergent sequences withlimn→∞ xn =
`1 andlimn→∞ xn = `2. Then

(i) limn→∞(xn + yn) = `1 + `2

(In words: the limit of a sum is the sum of the limits (provided the individual
limits exist).)

(ii) If α ∈ R (constant), thenlimn→∞ αxn = α`1.

(Multiplying each term of a convergent sequence by a constant produces
a new convergent sequence where the new limit is that constant times the
original limit.)

(iii) limn→∞(xnyn) = `1`2

(The limit of a product is the product of the limits (provided the individual
limits exist).)

(iv) If `2 6= 0 then there existsn0 ∈ N so thatyn 6= 0 for all n ≥ n0 and also

lim
n→∞

xn

yn

=
`1

`2

(The limit of a quotient is the quotient of the limits provided the denominator
limit is not 0 (and the individual limits exist).)

Proof. (i) Start withε > 0 given. Our aim is to find (or show that it is possible
to find)N ∈ N so that

|(xn + yn)− (`1 + `2)| < ε holds for alln ≥ N.
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We know that we can findN1 ∈ N so that

|xn − `1| <
ε

2
holds for alln ≥ N1

(using the definition oflimn→∞ xn = `1). We can also findN2 ∈ N so that

|yn − `2| <
ε

2
holds for alln ≥ N2.

TakeN = max(N1, N2) and then we can say that for anyn ≥ N we must
have bothN ≥ N1 andn ≥ N2. So, for suchn, we have both|xn−`1| < ε/2
and|yn − `2| < ε/2. it follows that, forn ≥ N , we have

|(xn + yn)− (`1 + `2)| = |(xn − `1) + (yn − `2)|
≤ |xn − `1|+ |yn − `2|

(using the triangle inequality)

<
ε

2
+

ε

2
= ε.

Thus we can findN as desired and we can do it no matter whatε > 0 we
start with. So we have established (i).

(ii) First we dispose of the caseα = 0. In that caseαxn = 0 is the constant
sequence 0 and so its limit is0 = α`1. We have established (ii) forα = 0.

Whenα 6= 0, we start withε > 0 given. Our aim is to show we can find
N ∈ N so that

|αxn − α`1| < ε for all n ≥ N.

To do this we examine the quantity|αxn−α`1| that is supposed to be ‘small’
(in the sense of< ε) for n large. Notice

|αxn − α`1| = |α(xn − `1)| = |α||xn − `1|.

We know we can findN ∈ N so that

|xn − `1| <
ε

|α|
for all n ≥ N.

For thisN we see that

|αxn − α`1| = |α||xn − `1| < |α| ε

|α|
= ε for all n ≥ N.

ThusN has the desired property. As we can do this no matter whatε > 0
we start with, we have established (ii) forα 6= 0.
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(iii) We first show this for the casè1 = 0. Using the fact thatlimn→∞ yn = `2,
we claim first that there must be a numberM so that|yn| ≤ M for all n.
Using theε-N definition of the limit with ‘ε’ = 1 to findN0 ∈ N so that

|yn − `2| < 1 for all n ≥ N0.

It follows that, forn ≥ N0,

|yn| = |(yn − `2) + `2| ≤ |yn − `2|+ |`2| < 1 + |`2|

(using the triangle inequality). If we now takeM to be the maximum of
the finitely many numbers|y1|, |y2|, . . . , |yn0−1|, 1 + |`2|, we can see that
|yn| ≤ M for all n.

Using this fact, we can see how to guarantee that|xnyn−`1`2| = |xnyn−0| =
|xnyn| is small forn large.

Start withε > 0 given. We know that|xnyn − `1`2| = |xn||yn| ≤ M |xn|,
and by the fact thatlimn→∞ xn = 0 we can findN ∈ N so that

|xn − `1| = |xn| <
ε

M
for all n ≥ N.

For this choice ofN we have

|xnyn − `1`2| = |xn||yn| ≤ M |xn| < M
ε

M
= ε for all n ≥ N.

Since we can find suchN no matter whatε > 0 is given, we see that we
have shown (iii) in the casè1 = 0.

The general case (any value of`1 now) can be deduced from this because

xnyn = (xn − `1 + `1)yn = (xn − `1)yn + `1yn

By what we have just shown

lim
n→∞

(xn − `1)yn = 0

(becauselimn→∞(xn − `1) = limn→∞ xn − limn→∞ `1 = `1 − `1 = 0 by
part (i)). Alsolimn→∞ `1yn = `1`2 by (ii). So, using (i),

lim
n→∞

xnyn = lim
n→∞

(xn − `1)yn + `1yn = 0 + `1`2 = `1`2.
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(iv) First we establish that forn largeyn 6= 0 (using the assumptioǹ2 6= 0).

Chooseε = |`2|/2 in the ε-N definition of limn→∞ yn = `2. We can find
n0 ∈ N so that

|yn − `2| < ε =
|`2|
2

for all n ≥ n0.

But for suchn ≥ n0 we then have

|yn| = |(yn − `2) + `2| ≥ |`2| − |yn − `2| > |`2| −
|`2|
2

=
|`2|
2

using a variation of the triangle inequality to be found in Exercises 2 (ques-
tion 2(a)).

From this we can see thatxn/yn makes perfect sense forn ≥
n0. That leaves us with the question of whatxn/yn would mean
if yn = 0. Of course, it would not mean anything for suchn
and it seems strange to refer tolimn→∞ xn/yn when there is a
possibility that the quotient sequence(xn/yn)∞n=1 is not properly
specified. We could add the hypothesis thatyn 6= 0 for all n
and strictly that is what we should do. However, the problem can
only arise (if it arises at all) forn < n0 and there are then only
a finite number of suchn. As far as the limit of a sequence is
concerned, changing a finite number of terms will not affect the
limit (because we can always ensure that theN we take in the
definition of the limit is bigger than any finite number ofn we
want to avoid). On these grounds we could live with the doubt
over how to deal with a finite number of termsxn/yn whereyn =
0.

Usually that is done, but we could also just insist thatyn is always
nonzero.

Now, we have not only showed that (from the assumptions made)yn 6= 0 for
n ≥ n0 (somen0), we have shown more that there is a numberc = |`2|/2 >
0 andn0 ∈ N so that|yn| > c for all n ≥ n0. This allows us to estimate (for
n ≥ n0) ∣∣∣∣ 1

yn

− 1

`2

∣∣∣∣ =

∣∣∣∣`2 − yn

yn`2

∣∣∣∣ =
|`2 − yn|
|yn||`2|

≤ |`2 − yn|
c|`2|

.
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We can use this estimate to showlimn→∞ yn = 1/`2. Start withε > 0 given
and chooseN1 ∈ N so that

|yn − `2| < c|`2|ε for all n > N1

(as we know we can do becausec|`2|ε > 0 by the definition oflimn→∞ yn =
`2).

Now takeN = max(n0, N1). Forn ≥ N we have bothn ≥ n0 andn ≥ N1,
and therefore we have both∣∣∣∣ 1

yn

− 1

`2

∣∣∣∣ ≤ |`2 − yn|
c|`2|

≤ |yn − `2|
c|`2|

and|yn − `2| < c|`2|ε.

Thus, for alln ≥ N we have∣∣∣∣ 1

yn

− 1

`2

∣∣∣∣ <
c|`2|ε
c|`2|

= ε.

Since we can find suchN ∈ N for any givenε > 0, we have shown

lim
n→∞

1

yn

=
1

`2

.

We can deduce (iv) from this using (iii) as follows

lim
n→∞

xn

yn

= lim
n→∞

xn
1

yn

= `1
1

`2

=
`1

`2

.

Examples 2.10. (i) For xn = n2

n2+1
, the sequence(xn)∞n=1 has limit 0.

Proof. We did this same example already using a direct approach (the defi-
nition alone) and now we can redo it using the theorem above.

lim
n→∞

n2

n2 + 1
= lim

n→∞

n2/n2

(n2 + 1)/n2

= lim
n→∞

1

1 + 1/n2

= lim
n→∞

1

1 + (1/n)2
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=
limn→∞ 1

limn→∞(1 + (1/n)2)

(by Theorem 2.9(iv))

=
1

limn→∞ 1 + limn→∞(1/n)2

(by Theorem 2.9(i))

=
1

1 + (limn→∞ 1/n)2

(by Theorem 2.9(iii))

=
1

1 + (0)2
= 1.

(ii) Note that the same technique can be used to work out many similar examples
such as

lim
n→∞

3n4 + 2n3 − 11n + 12

n5 + 2n + 1

(start by dividing above and below by the largest powern5).

(iii) For xn = (−1)n, the sequence(xn)∞n=1 has no limit (is not convergent).

Proof. The theorem is no help for this. We hae to go back to the definition of
limit. Suppose on the contrary thatlimn→∞(−1)n = ` for some` ∈ R. The
idea is to choose an interpretation of ‘close to`’ which could not be satisfied
simultaneously by both 1 and−1. Takeε = 1/2 in theε-N criterion and we
deduce that there must beN ∈ N so that

|(−1)n − `| < ε = 1/2 for all n ≥ N.

Choosingn = N andn = N + 1 (one of which must be odd and the other
even) we deduce that both

|(−1)− `| < 1

2
and|1− `| < 1

2
.

Then from the triangle inequality we see we would have to have

|1− (−1)| = |(1− `) + (`− (−1))| ≤ |1− `|+ |`− (−1)| < 1

2
+

1

2
= 1

and this gives the contradiction2 < 1.

So there can be no limit̀for this sequence.
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Definition 2.11. If (xn)∞n=1 is sequence, then it is called amonotone increasing
sequenceif xn ≤ xn+1 holds for eachn ∈ N.

This means thatx1 ≤ x2 ≤ x3 ≤ · · ·, and the termnon-decreasingis perhaps
more descriptive. If we mean really increasing, we use the termstrictly monotone
increasing— this meansxn < xn+1 for eachn ∈ N.

We can similarly definemonotone decreasing sequence(which meansxn ≥
xn+1 holds for eachn ∈ N. Againnon-increasingmay be a better term and the
termstrictly monotone decreasingis used forxn > xn+1 for n ∈ N (or x1 < x2 >
x3 > · · ·.

A sequence(xn)∞n=1 is calledmonotoneif it is eithermonotone increasingor
monotone decreasing.

Examples 2.12.The sequence(n2)∞n=1 is (strictly) monotone increasing while(
1
n

)∞
n=1

is (strictly) monotone decreasing.
Any constant sequence(c)∞n=1 is both monotone increasing and monotone de-

creasing.
The sequence(xn)∞n=1 with xn = (−1)n is not monotone.

Definition 2.13. If (xn)∞n=1 is sequence, then it is calledbounded aboveif the set
of values{xn : n ∈ N} is bounded above. (That means, if there isu ∈ R so that
xn ≤ u holds for alln ∈ N.)

The sequence is calledbounded belowif the set{xn : n ∈ N} is bounded
below.

The sequence is calledboundedif it is both bounded aboveand bounded be-
low.

Theorem 2.14. If a monotone sequence is bounded then it is convergent (has a
limit in R).

Proof. We take the case of a monotone increasing bounded sequence (as the case
if a monotone decreasing bounded sequence can be done in an analogous way or
deduced from the fact that if(xn)∞n=1 is monotone decreasing and bounded then
the sequence(−xn)∞n=1 is monotone increasing and bounded).

Let (xn)∞n=1 be monotone increasing and bounded (above). Letu = lub{xn :
n ∈ N} (which exists by the least upper bound principle (P13) because the set is
nonempty and bounded).

We showlimn→∞ xn = u.
Start withε > 0 given. Thenu−ε < u = the least upper bound, and so cannot

be an upper bound itself. To say it isnot an upper bound means it isnot true that
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xn ≤ u− ε holds for alln ∈ N. But that means there is at least oneN ∈ N where
xN > u− ε. As the sequence is monotone increasingxN ≤ xN+1 ≤ xN+2 ≤ · · ·,
we can see thatxn > u− ε for all n ≥ N1 Sincexn ≤ u = and upper bound, we
have now

u− ε < xn ≤ u holds for alln ≥ N

It follows that−varepsilon < xn − u ≤ 0 and|xn − u| = −(xn − u) < ε for all
n ≥ N .

As we can find suchN for eachε > 0, we have verifiedlimn→∞ xn = u.

By a (positive) decimal fraction we mean a number0.d1d2d3 . . . for a posssibly
infinite sequenced1, d2, . . . of digits taken fromdj ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.
When the decimal terminates it means

0.d1d2 . . . dn =
n∑

j=1

dj

10j

(and is actually a rational number). For infinite decimals we need a definition of
what they mean. We define

0.d1d2 . . . = lim
n→∞

n∑
j=1

dj

10j

(if the limit exists — but it does always exist as we will show in a moment). We
get arbitrary decimals by adding a whole number (positive integer) to a decimal
of this type and then possibly multiply by−1 (to get neagtives).

Corollary 2.15. Every decimal represents a real number.

Proof. The point is that the limitlimn→∞
∑n

j=1
dj

10j always exists. Butxn =∑n
j=1

dj

10j is a monotone increasing sequence because

xn+1 =
n+1∑
j=1

dj

10j
= xn +

dn+1

10n+1
≥ xn.

It is also bounded above because

xn ≤
n∑

j=1

9

10j
= 0.99 . . . 9 (n nines)

1We could show by induction onj ∈ N thatxN+j−1 > u− ε holds for allj ∈ N.
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and soxn ≤ 1− 0.00 . . . 1 < 1.
So limn→∞ xn does exist by Theorem 2.14.

Example 2.16.The decimal with repeating nines0.999 . . . = 1.

Proof. Takingdj = 9 for all j we see that

xn =
n∑

j=1

dj

10j
=

n∑
j=1

9

10j
= 0.99 . . . 9 = 1− 0.00 . . . 1 = 1− 1

10n

Since10n > n we can show quite easily thatlimn→∞
1

10n = 0 andlimn→∞ xn =
1.

Definition 2.17. If (xn)∞n=1 is sequence, then by asubsequencewe mean a se-
quence(yj)

∞
j=1 which is of the formyj = xnj

wheren1 < n2 < n3 < · · · is a
strictly monotone increasing sequence of natural numbers).

To be really precise the subsequence is not just the sequencey1, y2, y3, . . .
but also the mapj 7→ nj which determines the indicesnj used to pick out the
subsequence.

This if xn = (−1)n, then the constant sequence withyj = 1 for j = 1, 2, . . . is
a subsequence in lost of different ways. For examplenj = 2j works but so does
nj = 4j. The fact that the values same1, 1, 1, . . . can be picked out in more than
one way is almost never an issue.

For xn = 1/n, the sequence with termsyj = 1/(j2) is a subsequence (with
nj = j2).

Proposition 2.18. If limn→∞ xn = ` and (xnj
)∞j=1 is any subsequence, then

limj→∞ xnj
= `

Proof. An observation we will use is that if(nj)
∞
j=1 is a strictly monotone in-

creasing sequence of natural numbers, thennj ≥ j for eachj ∈ N. This we
can check by induction.n1 ≥ 1 is true. Assumingnj ≥ j i true, we can de-
duce fromnj < nj+1 and the fact thatnj, nj+1 ∈ N thatnj + 1 ≤ nj+1. Hence
j + 1 ≤ nj + 1 ≤ nj+1.

Now let ε > 0 be given. Sincelimn→∞ xn = ` we can findN ∈ N so that

|xn − `| < ε holds for alln ≥ N.

But then j ≥ N implies nj ≥ j ≥ N and so|xnj
− `| < ε. This shows

limj→∞ xnj
= `.
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Theorem 2.19.(Bolzano Weierstrass Theorem) If(xn)∞n=1 is a bounded sequence
in R, then it has a convergent subsequence (a subsequence with a limit inR).

The proof is mostly based on the following lemma.

Lemma 2.20.Every sequence(xn)∞n=1 has a monotone subsequence.

Proof. The key idea in the proof is the idea of apeak pointfor the sequence (the
term peaking index might be better). We say thatn ∈ N is a peak point of the
sequence(xn)∞n=1 if it is true that

xn ≥ xm for all m ∈ N with m ≥ n.

Either the sequence(xn)∞n=1 has infinitely many peak points or it has only a
finite number.

If it has infinitely many, letn1 = the smallest peak point,n2 = the smallest
peak point withn2 > n1 and so on. We definenj+1 inductively (or recursively) as
the smallest peak point wherenj+1 > nj. Thenxnj

≥ xnj+1
becausenj is a peak

point. Hence(xnj
)∞j=1 is a monotone decreasing subsequence of(xn)∞n=1.

If on the other hand there are only a finite number of peak points, there is
n1 ∈ N with n1 > all peak points. Sincen1 is not itself a peak point, there is
n2 > n1 with xn1 < xn2. Nextn2 is not a peak point (bigger than all peak points)
and so there isn3 > n2 with xn2 < xn3. In this way we can pickn1 < n2 <
n3 < · · · with nj < nj+1 andxnj

< xnj+1
for eachj ∈ N. (xnj

)∞j=1 is a monotone
increasing subsequence.

Proof. (of Theorem 2.19) Starting with a bounded sequence(xn)∞n=1, we use
Lemma 2.20 to find a monotone subsequence(xnj

)∞j=1.
Because the original sequence is bounded, there are numbersL, U ∈ R so that

L ≤ xn ≤ U for eachn ∈ N. It follows thatL ≤ xnj
≤ U for eachj ∈ N and

so the subsequence(xnj
)∞j=1 is bounded as well as monotone. By Theorem 2.14

limj→∞ xnj
exists inR.
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