
Chapter 1: Numbers 121 2004–05

As explained in the introduction, rather than trying to build up (real) numbers
from (say) the natural numbers, or at the other extreme just assuming we know
what they are, we will write down a list of properties or axioms that we will
assume the real numbers satisfy.

Many of the properties are so simple they may seem almost too simple to
mention. However, we will get a fairly concise list of properties that could be
verified if one were to construct the real numbers out of natural numbers, integers
and rationals. It is in fact also possible to prove that there is essentially only one
set of objects satisfying the full list of properties for real numbers. We will neither
construct the numbers nor prove this statement that our list of axioms characterises
the real numbers.

We will assume that there is a set of objects (which we call the set ofreal
numbers) denoted by the symbolR and we will list properties we assume about
R.

Properties of addition

We assume that the setR comes with an operation called addition, which asso-
ciates to each pair ofa ∈ R andb ∈ R another numbera + b ∈ R. Further we
assume that the following properties hold for this operation

(P1) (associative law)
(a + b) + c = a + (b + c)

whenevera, b, c ∈ R.

(P2) (existence of an additive identity)

There is a number0 ∈ R with the properties

a + 0 = a

0 + a = a

for eacha ∈ R.

(P3) (existence of additive inverses)
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For eacha ∈ R there is ab ∈ R with the properties

a + b = 0

b + a = 0

(P4) (commutativity of addition, also known as the abelian property)

a + b = b + a for eacha, b ∈ R

Remark 1.1. You will notice that this is quite a short list of properties about
addition, and certainly all will seem obviously true. They are all true inZ and
Q as well as inR. Later you will see other situations where there is a notion of
+ and we have these properties also (vectors can be added, as can matrices, for
example).

If we stuck withN we would not have (P2) or (P3). ForN0 we would not have
(P3) (additive inverses).

Lemma 1.2. There is only one zero element inR.

That is, if0̃ and ˜̃0 are two elements ofR satisfying (P2), theñ0 = ˜̃0.

Proof. Writing out in detail what we are assuming, we are assuming

a + 0̃ = a and0̃ + a = a for eacha ∈ R

and also
a + ˜̃0 = a and˜̃0 + a = a for eacha ∈ R.

If we look at
0̃ + ˜̃0

using the property of̃0 we get0̃ + ˜̃0 = ˜̃0, but if we look at it using the property of
˜̃0 we get0̃ + ˜̃0 = 0̃. So

˜̃0 = 0̃ + ˜̃0 = 0̃.

Note 1.3. One consequence of (P2) is that the set of numbers is not empty. There
is at last a number0.
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Lemma 1.4. If a ∈ R then there is only one additive inverse fora.
That is ifb ∈ R satisfies

a + b = 0 andb + a = 0

and if c ∈ R satisfies
a + c = 0 andc + a = 0,

thenb = c.

Proof. Consider
(c + a) + b = c + (a + b)

(true by associativity (P1)). Working it out we get

0 + b = c + 0

and so
b = c

by the property (P2) of zero.

Note 1.5.Because of the lemma, we are justified in having a special notation−a
for the additive inverse ofa ∈ R.

Without the lemma, we could fall into a trap if−a was something that could
be differently interpreted in different places.

Properties of multiplication

As well as addition, we also assume there is another operation called multiplica-
tion onR and associating to eacha ∈ R andb ∈ R another numbera · b ∈ R. [For
a while we will write in the· where we mean multiplication, but later we will use
the standard way of writingab instead ofa · b.]

We assume that multiplication satisfies the following properties:

(P5) (associative law)
(a · b) · c = a · (b · c)

whenevera, b, c ∈ R.
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(P6) (existence of a multiplicative identity)

There is a number1 ∈ R with 1 6= 0 and the properties

a · 1 = a

1 · a = a

for eacha ∈ R.

(P7) (existence of multiplicative inverses)

For eacha ∈ R with a 6= 0 there is ab ∈ R with the properties

a · b = 1

b · a = 1

(P8) (commutativity of multiplication)

a · b = b · a for eacha, b ∈ R

(P9) (distributive law, connecting+ and·)

a · (b + c) = a · b + a · c

and
(a + b) · c = a · c + b · c

holds for eacha, b, c ∈ R.

Lemma 1.6. (i) 0 · x = 0 for eachx ∈ R

(ii) −x = (−1) · x for eachx ∈ R

Proof. (i) Fix x ∈ R and lety = 0 · x. Then

y + y = 0 · x + 0 + ·x
= (0 + 0) · x (distributive law (P9))

= 0 · x
= y
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Adding−y to both sides ofy + y = y we get

(y + y) + (−y) = y + (−y)

y + (y + (−y)) = 0 (associativity of+ and definition of−y)

y + 0 = 0

y = 0

So we havey = 0 · x = 0 as required.

(ii) Fix x ∈ R and considerx + (−1) · x = 1 · x + (−1) · x = (1 + (−1)) · x
(distributive law (P9)). But(1 + (−1)) · x = 0 · x = 0 by the first part. So
we getx + (−1) · x = 0. This means that(−1) · x ∈ R has the property that
additive inverses have and so(−1) · x is−x.

Notation 1.7. From now we allow ourselves to writex−y when we meanx+(−y).

Lemma 1.8. (i) The following cancellation law holds inR:

x, y, z ∈ R, x + z = y + z ⇒ x = y

(ii) The following cancellation law holds inR:

x, y, z ∈ R, z 6= 0, x · z = y · z ⇒ x = y

Proof. Exercise.

Example 1.9. Here is a strange example of a set with operations+ and · where
all the properties (P1) to (P9) hold for elements of the set. The idea behind this
example is to show that we do not have enough properties to say we are really
dealing with familiar numbers.

Let S = {e, o} (and think ofe as standing forevenando for odd). Define the
operations by the following two tables.

+ e o
e e o
o o e

· e o
e e e
o e o



6 Chapter 1: Numbers

You can check that each of the properties (P1) to (P9) hold whenR is replaced
by S everywhere. (This means checking each of the finitely many possibilities for
a, b, c ∈ S. The r̂ole of 0 is taken bye ∈ S and the r̂ole of 1 byo ∈ S.)

The properties (P1) to (P9) are called theaxioms for a fieldor thefield axioms.
Abstractly, any sent with operations+ and· given in such a way that the properties
(P1) to (P9) hold is called afield.

The example just given is a field with two elements (the smallest possible
number because there have to be0 6= 1 in any field). You may also come across
essentially the same example when you study the integers modulo 2. What you do
there is to replace every integer by its remainder after dividing by 2, so that we end
up with{0, 1} and the operations+ and· are as follows: perform the operation in
Z and ten take the remainder on dividing by 2.

Remark 1.10.We proceed now to introduce properties about ordering of numbers
(which are not satisfied by the exampleS = {e, o}). We are familiar with the idea
of “(strictly) less than”.

We recall thatx < y is the notation for “less than” and thatx ≤ y (reads “less
that or equal”) means thateither x < y or x = y. x > y is just another way of
writing y < x and we also havex ≥ y (“greater than or equal”).

Rathe than introducing a relation< (with some associated rules) we introduce
a concept of (strictly) positive. If we understand what it means to be strictly
positive and we will later getx < y by defining it to meany − x positive.

Properties of (strictly) positive numbers

We suppose that there is given a setP ⊂ R (called the set ofpositivenumbers)
with the following properties

(P10) (Trichotomy law) For each numberx ∈ R one and only one of the follow-
ing statements is true:

(i) x = 0

(ii) x ∈ P

(iii) −x ∈ P

(P11) (sums of ‘positive’ numbers are ‘positive’)

If x, y ∈ P , thenx + y ∈ P .
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(P12) (products of ‘positive’ numbers are ‘positive’)

If x, y ∈ P , thenx · y ∈ P .

Notation 1.11. We sayx ∈ R is (strictly) positiveif x ∈ P , while if −x ∈ P we
say thatx is (strictly) negative.

The trichotomy law then says that a givex ∈ R is either 0, positive or negative
(and cannot satisfy two of these 3 options).

Lemma 1.12. (i) If −a ∈ P and−b ∈ P , thenab ∈ P (the product of any two
negative numbers is positive).

(ii) If a ∈ R anda 6= 0, thena2 ∈ P .

(iii) 1 ∈ P .

Proof. (i) By Lemma 1.6 (ii), if−a ∈ P and−b ∈ P , then

(−a)(−b) = ((−1)a)(−b) = (a(−1))(−b) = a((−1)(−a))

by commutativity and associativity, and so

(−a)(−b) = a(−(−b)) = ab

(ii) If a ∈ R anda 6= 0, then by trichotomy we either havea ∈ P or−a ∈ P . If
a ∈ P thena2 ∈ P by (P12). If−a ∈ P , thena2 = aa ∈ P by part (i).

(iii) From part (ii), since1 6= 0, we have12 ∈ P . But 12 = 1 and so we have
1 ∈ P .

Definition 1.13 (Less than).We define a relation< on R (called (strictly) less
than) byx < y (for x, y ∈ R) if y − x ∈ P .

Proposition 1.14. (a) (trichotomy in another form) Ifx, y ∈ R, then one and
only one of the following statements is true

(i) x = y

(ii) x < y

(iii) y < x

(b) (transitivity) Ifx, y, z ∈ R, x < y andy < z, thenx < z.
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(c) If x, y, z ∈ R andx < y, thenx + z < y + z.

(d) If x, y, z ∈ R, x < y and0 < z, thenxz < yz.

Proof. (a) follows by applying (P10) toy − x.

(b) If x < y andy < z, theny − x ∈ P andz − y ∈ P . Hence their sum
(y − x) + (z − y) = z − x ∈ P by (P11). Sox < z.

(c) If x < y, then we havey − x ∈ P . For anyz ∈ R, x + z < y + z means
(y + z)− (x + z) = y − x ∈ P and we are assuming this is true.

(d) If x < y and0 < z, then we havey − x ∈ P andz ∈ P . So, by (P12),
(y − x)z ∈ P . Thusyz − xz ∈ P or xz < yz.

Note 1.15.We write 2 for1+1. Since1 ∈ P we have0 < 1 and so0+1 < 1+1
or 1 < 2. Thus2 6= 1 in R.

We can continue in this vein and write 3 for2 + 1, 4 for 3 + 1 and this way
find a copy of the natural numbersN = {1, 2, 3, . . .} insideR.

From this we can findZ andQ insideR.
However we cannot necessarily get more thanQ because the rational numbers

Q with the usual interpretation of addition, multiplication and positive (elements
p/q with p, q ∈ N) does satisfy all of (P1) – (P12).

We want an additional property (or properties) that ensures that, for example
there is a number

√
2 in R. We will do this with one additional property, but it

takes a bit more digesting that the properties (P1) – (P12) (which all seem more
or less obvious when you see them stated).

We can picture the real numbers as points on an axis (where we pick out an
origin marked with the number 0 and a point 1 — then we mark 2 twice as far
from 0 as 1 in the same direction,1

2
as the midpoint between 0 and 1, and so on).

We can geometrically mark off a distance
√

2 from the origin in the direction 1
and then we want a property that ensures there is a number at that point on the
line. If we had only the points corresponding to rational numbersQ, there would
be no number corresponding to the point in question. Our last property is going
to say that all the points correspond to numbers, but the way of formulating this
will be somewhat indirect.

A direct way to go would be to consider decimal expansions. Recall that√
2 = 1.4142 . . .. The decimal approximations 1,1.4 = 1 + 4

10
= 14

10
, 1.41 =
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1 + 4
10

+ 1
102 = 141

100
, etc., should be heading towards some number that is really

there and not ‘missing’ fromR.
It would perhaps be possible to insist that every (finite or infinite) decimal

represents a real number, but this can be messy because for example0.999 . . .
(repeating 9’s) is the same as 1.

Our approach is to approach the matter in a way that seems almost backwards.
Instead of demanding that we get somewhere by building up 1, 1.4, 1.41, 1.414,
1.4142, . . . from below, we go at it from the other side and work down towards the
right number.

Definition 1.16. If S ⊂ R is a subset, then a numberu ∈ R is called an upper
bound forS if it is true thats ≤ u for eachs ∈ S.

If we pictureR as a number line andS as a marked set of points on the line,
then to say thatu is an upper bound forS means that every element ofS is to the
‘left’ of u, or at least none of them are definitely to the right ofS.

Example 1.17. (a) LetS = [0, 1] = {x ∈ R : 0 ≤ x andx ≤ 1} = the closed
interval from 0 to 1 (inclusive).

Thenu = 2 is an upper bound forS becauses ∈ S ⇒ s ≤ 1 ⇒ s ≤ 2.

Also u = 1 is an upper bound. As well as being an upper bound1 ∈ S and so
here we have 1 as a greatest element ofS.

(b) S = (−∞,−2) = {x ∈ R : x < −2} = the open interval to the ‘left’ of−2
hasu = −1 as an upper bound.

It also hasu = −2 as an upper bound, the “most efficient” upper bound in
some sense. But there is no greatest element inS.

(c) The empty setS = ∅ is a subset ofR. Any numberu ∈ R is an upper bound
for S in this case.

The reason for that is that itis true that

s ≤ u holds for eachs ∈ S.

The reason it is true is that there are no elementss ∈ S and so there are no
elements we need to check the inequality about. We say that the statement is
vacuouslytrue.

We now state our last property forR.
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Least upper bound principle

(P13) If a setS ⊂ R in nonemptyand has an upper bound, then it has a least
upper bound.

By a least upper boundfor a setS ⊂ R we mean an upper boundu ∈ R for S
with the property thatu ≤ u′ for each upper boundu′ of S.

Proposition 1.18. (i) N ⊂ R has no upper bound inR

(ii) If x ∈ R and0 < x, then there isn ∈ N with 1
n

< x.

Proof. (i) If N ⊂ R had an upper bound inR, then (because1 ∈ N and so
N 6= ∅) the least upper bound principle says that there would have to be an
upper boundu ∈ R for N.

Now u − 1 cannot be an upper bound forN becauseu − 1 < u andu is
supposed to be≤ every upper bound. To say thatu − 1 is not an upper
bound means that it isnot rue to saythatn ≤ u − 1 holds for eachn ∈ N.
To say that is not true means that thereis at least onen ∈ N wheren > u−1.

Thenn+1 > u. Butn+1 ∈ N as well asn and this contradicts the assertion
thatu is an upper bound forN.

The contradiction came about because we assumed there was an upper bound
for N and the conclusion we draw is thatN has no upper bound inR.

(ii) If x ∈ R, x > 0, then 1
x
∈ R and so cannot be an upper bound forN (by the

first part). So there is somen ∈ N with n > 1
x
. It follows (for example by

multiplying both sides byx
n
) thatx > 1

n
.

The first part of the proposition can be thought of as saying that there are no
‘infinitely large’ real numbers.

Proposition 1.19.There is a numberx ∈ R with x2 = 2.

Proof. ConsiderS = {x ∈ R : x > 0 andx2 < 2}. Notice thatS 6= ∅ because
1 ∈ S. It is bounded above by 2. To see this suppose on the contraryx ∈ S and
x > 2. Thenx2 > 2x > 22 = 4 > 2, contradictingx2 < 2. We conclude that
x ≤ 2 for eachx ∈ S, that is that 2 is an upper bound forS.
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Now the least upper bound principle states that there is a least upper bound
u ∈ R for S. Our claim is thatu2 = 2. If u2 6= 2 there are two other possibilities
(i) u2 < 2 and (ii)u2 > 2. We now show that neither (i) nor (ii) are the case.

If u2 < 2, we claim that there isn ∈ N with u + 1
n
∈ S (and this would

contradictu being an upper bound). Now(
u +

1

n

)2

= u2 + 2
u

n
+

1

n2
≤ u2 + 2

u

n
+

1

n
= u2 +

2u + 1

n
.

It follows that
(
u + 1

n

)2
< 2 if u2 + 2u+1

n
< 2 or, equivalently if2u+1

n
< 2 − u2.

Sinceu ≥ 1 ∈ S, we haveu > 0 and so2u + 1 > 0. Thus 2u+1
n

< 2 − u2

is equivalent to1
n

< 2−u2

2u+1
. We can find ann ∈ N with this property by the

proposition above. For suchn ∈ N we then have
(
u + 1

n

)2
< 2 andu+ 1

n
> u > 0.

Henceu + 1
n
∈ S contradictingu an upper bound forS. So (i) is eliminated.

If u2 > 2 we claim that there isn ∈ N so thatu − 1
n

is an upper bound forS
(smaller than the least upper boundS and so a contradiction). We choosen ∈ N
so that

(
u− 1

n

)2
> 2. This we can do because(

u− 1

n

)2

= u2 − 2
u

n
+

1

n2
> u2 − 2

u

n

and this will be> 2 we ensure

u2 − 2
u

n
> 2

or, equivalently

u2 − 2 > 2
u

n
.

We can arrange this by choosingn ∈ N (via the proposition above) so that or
1
n

< u2−2
2u

. This is possible becauseu > 0 and we are assumingu2 − 2 > 0.

Having chosenn so that
(
u− 1

n

)2
> 2 we claim now thatu − 1

n
is an upper

bound forS. If not therex ∈ S with x > u − 1
n
. Sinceu ≥ 1 ∈ S and1/n ≤ 1

we haveu− 1
n
≥ 0. So

x2 > x

(
u− 1

n

)
>

(
u− 1

n

)2

> 2

contradictingx ∈ S.
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So now we have shown that there is an upper boundu − 1/n for S strictly
smaller than the supposed least upper boundu. Thus (ii) is not possible.

Having eliminated the possibilities (i) and (ii), we are left withu2 = 2 as the
only remaining possibility.

Remark 1.20. A useful remark is that a setS ⊂ R can only have one least upper
bound. Ifu is a least upper bound, then we haveu ≤ u′ for each upper boundu′.
If u1 is also a least upper bound then alsou1 ≤ u′ for each upper boundu′. So
takingu′ = u1 in the property ofu we have

u ≤ u1

and takingu′ = u in the property ofu1 we have

u1 ≤ u.

It follows thatu = u1.
So we can refer tothe least upper bound of a setS ⊂ R if S 6= ∅ andS has

some upper bound.
There is agreatest lower bound principle as well as a least upper bound

principle, but one follows from the other.
First a lower boundfor a setS ⊂ R is a number̀ ∈ R satisfying` ≤ s for

eachs ∈ S. A greatest lower bound for a setS ⊂ R is a lower bound̀ for S with
the property that̀ ′ ≤ ` for each upper bound̀′ for S. As with upper bounds,
there can only be one least upper bound for a setS (or none).

There is a way to flip between upper and lower bounds (but not for the same
set). If` is an upper bound forS ⊂ R (that is` ≤ s for eachs ∈ S) then−` is an
upper bound for the setT = {−s : s ∈ S} (that is−s ≤ −` for eachs ∈ S, or
t ≤ −` for eacht ∈ T ). One can also check that` is a greatest lower bound for
S exactly when−` is a least upper bound forT , and this is why the least upper
bound principle tells us that the following is true:

Greatest lower bound principle: If S ⊂ R is nonempty and has a
lower bound, then it has a greatest lower bound.

We say that a subsetS ⊂ R is bounded aboveif there is some upper bound for
S. Also S is calledbounded belowif there is some lower bound forS.

A setS ⊂ R is boundedif it is bothbounded above and bounded below.
When a subsetS ⊂ R has a least upper bound we will often write lub(S) for

that least upper bound. Another notation in common use issup(S), wheresup is
an abbreviation for the wordsupremum.
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When a subsetS ⊂ R has a greatest lower bound we will often write glb(S)
for that greatest lower bound. Another notation in common use isinf(S), where
inf is an abbreviation for the wordinfimum.

To make life complicated, we may sometimes refer to lub(S), sup(S) or
inf(S) when we are discussing the possible existence of these for a particular
S. We might write ‘findsup(S) or show that it does not exist’ instead of ‘find the
least upper bound forS or show that there is no least upper bound’.

Definition 1.21. Theabsolute value|x| of x ∈ R is defined by the rule

|x| =
{

x if x ≥ 0
−x if x < 0

Example 1.22.| − 3| = −(−3) = 3

Note 1.23.|x| ≥ 0 for eachx ∈ R.

Theorem 1.24 (Triangle inequality). If x, y ∈ R, then|x + y| ≤ |x|+ |y|.

Proof. The proof relies on considering the 4 separate cases

1. x ≥ 0 andy ≥ 0

2. x < 0 andy < 0

3. x ≥ 0 andy < 0

4. x < 0 andy ≥ 0

(and these cover all possibilities forx andy).
Here are the arguments

1. If x ≥ 0 andy ≥ 0, thenx + y ≥ 0 and so

|x + y| = x + y = |x|+ |y|.

That is equality holds and so|x + y| ≤ |x|+ |y| is valid.

2. If x < 0 andy < 0, thenx + y < 0 and so

|x + y| = −(x + y) = (−x) + (−y) = |x|+ |y|

and again equality holds.
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3. If x ≥ 0 andy < 0, we consider two sub cases

(a) x + y ≥ 0

Then we have
|x + y| = x + y

and|x| + |y| = x + (−y). The desired inequality|x + y| ≤ |x| + |y|
then reduces tox + y ≤ x− y, which is equivalent (adding−x to both
sides) toy ≤ −y and this is in turn equivalent to2y ≤ 0 — which we
know to be true in this case.

(b) x + y < 0

We have then|x + y| = −(x + y) = −x − y and again|x| + |y| =
x + (−y). The desired inequality|x + y| ≤ |x| + |y| then reduces to
−x − y ≤ x − y and this is equivalent to−x ≤ x or 0 ≤ 2x — which
we know to be true in this case.

4. The casex < 0 andy ≥ 0 is similar to the previous case (if we swop the
rôles ofx andy).

Remark 1.25. We can help to see our way by looking at suitable pictorial or
graphical representations of what we are doing. (But we do not want to rely on
the pictures for the proof as it is sometimes possible to draw pictures that are
misleading or are over simplified.)

We can think of pointsx ∈ R as points on a number line, and|x| as the
‘distance’ fromx to the origin on the line. Fora, b ∈ R we can think of|a− b| as
the distance betweena andb.

If a, b, c ∈ R and we takex = a− b, y = b− c in the triangle inequality 1.24
then we get

|(a− b) + (b− c)| ≤ |a− b|+ |b− c|.

This simplifies to
|a− c| ≤ |a− b|+ |b− c|, (1)

or
distance(a, c) ≤ distance(a, b) + distance(b, c)

The ‘triangles’ we can see on a line are degenerate (or flattened) triangles, but the
latter way of looking at it says that the length of one side of a triangle is at most
the sum of the lengths of the other two sides.
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We can recover Theorem 1.24 from knowing (1) holds for alla, b, c ∈ R. Fix
x, y ∈ R any two numbers and takea = x, b = 0 andc = −y in (1). This means
that Theorem 1.24 is equivalent to the statement that (1) holds for alla, b, c ∈ R
(and explains the name of the thorem).

Remark 1.26. As mentioned previously, we will not prove that there is a system
of numbers where all the properties (P1) to (P13) are satisfied. It is possible to
prove it, but it is laborious and maybe not all that enlightening.

It is further possible to prove that there can really only be one such system of
numbers. Given two such systems, satisfying all of (P1) to (P13), there has to be a
way to match up the numbers in one system with the numbers in the other so that
all the things we consider (addition, multiplication, positive) match between one
system and the other. Again, we will not try to prove that this is true.

We will just takeR (with its properties) as given and work with it.


