Chapter 1: Numbers 121 2004-05

As explained in the introduction, rather than trying to build up (real) numbers
from (say) the natural numbers, or at the other extreme just assuming we know
what they are, we will write down a list of properties or axioms that we will
assume the real numbers satisfy.

Many of the properties are so simple they may seem almost too simple to
mention. However, we will get a fairly concise list of properties that could be
verified if one were to construct the real numbers out of natural numbers, integers
and rationals. Itis in fact also possible to prove that there is essentially only one
set of objects satisfying the full list of properties for real numbers. We will neither
construct the numbers nor prove this statement that our list of axioms characterises
the real numbers.

We will assume that there is a set of objects (which we call the setaif
number3 denoted by the symbd and we will list properties we assume about
R.

Properties of addition

We assume that the sitcomes with an operation called addition, which asso-
ciates to each pair of € R andb € R another numbet + b € R. Further we
assume that the following properties hold for this operation

(P1) (associative law)
(a+b)+c=a+(b+c)

whenevem, b, c € R.

(P2) (existence of an additive identity)
There is a numbeay € R with the properties

a+0 = a
O+a = a

for eacha € R.

(P3) (existence of additive inverses)
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For each: € R there is & € R with the properties

a+b = 0
b+a = 0

(P4) (commutativity of addition, also known as the abelian property)

a+b=>b+ aforeacha,bec R

Remark 1.1. You will notice that this is quite a short list of properties about
addition, and certainly all will seem obviously true. They are all truéZimand
Q as well as inR. Later you will see other situations where there is a notion of
-+ and we have these properties also (vectors can be added, as can matrices, for
example).

If we stuck withN we would not have (P2) or (P3). Fd¥, we would not have
(P3) (additive inverses).

Lemma 1.2. There is only one zero elementlin )
That is, if0 and0 are two elements & satisfying (P2), thep = 0.

Proof. Writing out in detail what we are assuming, we are assuming
a+0 = aand0 + a = a for eacha € R

and also 3
= g and0 + a = a for eacha € R.

o

a—+
If we look at .
0+0
using the property o we get0 + 0= 6 but if we look at it using the property of
0 we get0 + 0 = 0. So

= 0.

O
(el
O

+
[]

Note 1.3. One consequence of (P2) is that the set of numbers is not empty. There
is at last a numbe®.
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Lemma 1.4.If a € R then there is only one additive inverse tor
That is ifb € R satisfies

a+b=0andb+a =0

and ifc € R satisfies
a+c=0andc+a =0,

thenb = c.

Proof. Consider
(c+a)+b=c+ (a+D)

(true by associativity (P1)). Working it out we get
0+b=c+0

and so

by the property (P2) of zero. Il

Note 1.5. Because of the lemma, we are justified in having a special notation
for the additive inverse af € R.

Without the lemma, we could fall into a trap-Ha was something that could
be differently interpreted in different places.

Properties of multiplication

As well as addition, we also assume there is another operation called multiplica-
tion onR and associating to eaeche R andb € R another numbei - b € R. [For
a while we will write in the- where we mean multiplication, but later we will use
the standard way of writingb instead ofu - b.]

We assume that multiplication satisfies the following properties:

(P5) (associative law)
(@a-b)-c=a-(b-c)

whenevel, b, c € R.
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(P6) (existence of a multiplicative identity)
There is a number € R with 1 # 0 and the properties

a-1 = a

l-a =
for eacha € R.

(P7) (existence of multiplicative inverses)
For each: € R with a # 0 there is & < R with the properties

=1
ca = 1
(P8) (commutativity of multiplication)

a-b=2>b-aforeacha,b € R

(P9) (distributive law, connecting- and-)
a-(b+c)=a-b+a-c

and
(a+b)-c=a-c+b-c

holds for eachu, b, ¢ € R.
Lemmal.6. (i) 0-x =0foreachr € R
(i) —x = (—1)-xzforeachr € R
Proof. (i) Fixz € Randlety = 0-x. Then

y+y = 0-2+0+-2

(040) -z (distributive law (P9))
0-z

=Y
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Adding —y to both sides of; + y = y we get

W+y)+(=y) = y+(-y)
y+ (y+(—y)) = 0 (associativity oft and definition of-y)
y+0 = 0
y = 0
So we havey = 0 - = = 0 as required.
(i) Fix z € Rand consider: + (1) -z =12+ (-1)- 2= (1+(-1)) -z
(distributive law (P9)). Butl + (—1)) - = = 0 - z = 0 by the first part. So
we getr + (—1) -z = 0. This means thgt—1) - € R has the property that

additive inverses have and §61) - z is —x.
[

Notation 1.7. From now we allow ourselves to write-y when we mean+(—y).
Lemma 1.8. (i) The following cancellation law holds iR:

Yy, z€ERr+z=y+2=>r=y

(i) The following cancellation law holds iR:
x7yaz€R7Z7éO7$'Z:y'Z:>x:y
Proof. Exercise. B

Example 1.9. Here is a strange example of a set with operatignand- where
all the properties (P1) to (P9) hold for elements of the set. The idea behind this
example is to show that we do not have enough properties to say we are really
dealing with familiar numbers.

Let S = {e, o} (and think ofe as standing foevenando for odd). Define the
operations by the following two tables.

+|€e|o0 - e|o
e
o|oj|e oje|o

(0]
o
(0]
(0]
(0]
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You can check that each of the properties (P1) to (P9) hold vithenreplaced
by S everywhere. (This means checking each of the finitely many possibilities for
a,b,c € S. The Ble of 0 is taken by € S and the éle of 1 byo € S.)

The properties (P1) to (P9) are called theoms for a fieldr thefield axioms
Abstractly, any sent with operatiorsand- given in such a way that the properties
(P1) to (P9) hold is called feld.

The example just given is a field with two elements (the smallest possible
number because there have tolb¢ 1 in any field). You may also come across
essentially the same example when you study the integers modulo 2. What you do
there is to replace every integer by its remainder after dividing by 2, so that we end
up with {0, 1} and the operations and- are as follows: perform the operation in
Z and ten take the remainder on dividing by 2.

Remark 1.10. We proceed now to introduce properties about ordering of numbers
(which are not satisfied by the example= {e, 0o}). We are familiar with the idea
of “(strictly) less than”.

We recall thatr < y is the notation for “less than” and that< y (reads “less
that or equal”) means thaitherx < y or x = y. = > y is just another way of
writing y < x and we also have > y (“greater than or equal”).

Rathe than introducing a relatien(with some associated rules) we introduce
a concept of (strictly) positive. If we understand what it means to be strictly
positive and we will later get < y by defining it to meany — z positive.

Properties of (strictly) positive numbers

We suppose that there is given a getC R (called the set opositivenumbers)
with the following properties

(P10) (Trichotomy law) For each numberc R one and only one of the follow-
ing statements is true:
@i =0
(i) xeP
(i) —zeP
(P11) (sums of ‘positive’ numbers are ‘positive’)
If z,y € P,thenx +y € P.
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(P12) (products of ‘positive’ numbers are ‘positive’)
If z,y € P,thenx -y € P.

Notation 1.11. We sayz € R is (strictly) positiveif x € P, while if —x € P we
say thatr is (strictly) negative

The trichotomy law then says that a givec R is either O, positive or negative
(and cannot satisfy two of these 3 options).

Lemmal.12. (i) If —a € Pand—b € P, thenab € P (the product of any two
negative numbers is positive).

(i) If a € Randa # 0, thena? € P.
(i) 1€ P.
Proof. (i) By Lemma 1.6 (ii), if—a € P and—b € P, then
(—a)(=b) = ((=1)a)(=b) = (a(=1))(=b) = a((=1)(=a))

by commutativity and associativity, and so

(ii) If a € Randa # 0, then by trichotomy we either havec P or —a € P. If
a € Pthena® € P by (P12). If—a € P, thena® = aa € P by part (i).

(iii) From part (ii), sincel # 0, we havel? € P. But1? = 1 and so we have

leP.
[]

Definition 1.13 (Less than).We define a relatiorc on R (called (strictly)less
than byz <y (forz,y e R)ify — z € P.

Proposition 1.14. (a) (trichotomy in another form) If,y € R, then one and
only one of the following statements is true
(i) z=y
(i) x <y
(i) y<uz

(b) (transitivity) Ifz,y, z € R, z < y andy < z, thenz < z.
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(c) fz,y,z € Randx < y,thenz 4+ z < y + z.
d) Ifz,y,z € R,z < yand0 < z, thenzz < yz.
Proof. (a) follows by applying (P10) tg — =.

(b) f z < yandy < z, theny — 2z € Pandz —y € P. Hence their sum
(y—x)+ (z—y)=2z—2x € Pby (P11). Sor < =.

(c) If x < y, then we havey — x € P. Foranyz € R, z + z < y + z means
(y+2) — (v +2) =y —x € P and we are assuming this is true.

(d) If x < yand0 < z, then we havegy — x € P andz € P. So, by (P12),
(y—x)z € P. Thusyz —zz € Porzz < yz.
O

Note 1.15.We write 2 forl 4+ 1. Sincel € Pwe have) < landsd)+1 < 1+1
orl <2 Thus2 #1inR.

We can continue in this vein and write 3 2r+ 1, 4 for 3 + 1 and this way
find a copy of the natural numbeks= {1,2,3,...} insideR.

From this we can fin@ andQ insideR.

However we cannot necessarily get more tllalpecause the rational numbers
Q with the usual interpretation of addition, multiplication and positive (elements
p/q with p, ¢ € N) does satisfy all of (P1) — (P12).

We want an additional property (or properties) that ensures that, for example
there is a numbet/2 in R. We will do this with one additional property, but it
takes a bit more digesting that the properties (P1) — (P12) (which all seem more
or less obvious when you see them stated).

We can picture the real numbers as points on an axis (where we pick out an
origin marked with the number 0 and a point 1 — then we mark 2 twice as far
from 0 as 1 in the same directio%‘n,as the midpoint between 0 and 1, and so on).
We can geometrically mark off a distang& from the origin in the direction 1
and then we want a property that ensures there is a number at that point on the
line. If we had only the points corresponding to rational numkgrthere would
be no number corresponding to the point in question. Our last property is going
to say that all the points correspond to numbers, but the way of formulating this
will be somewhat indirect.

A direct way to go would be to consider decimal expansions. Recall that

V2 = 1.4142.... The decimal approximations 1,4 = 1+ 4 = 1 141 =
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1+ 1% + # = % etc, should be heading towards some number that is really
there and not ‘missing’ fronR.

It would perhaps be possible to insist that every (finite or infinite) decimal
represents a real number, but this can be messy because for exangple. .
(repeating 9's) is the same as 1.

Our approach is to approach the matter in a way that seems almost backwards.
Instead of demanding that we get somewhere by building up 1, 1.4, 1.41, 1.414,
1.4142, ...from below, we go at it from the other side and work down towards the

right number.

Definition 1.16. If S C R is a subset, then a numbere R is called an upper
bound forS if it is true thats < u for eachs € S.

If we pictureR as a number line anfl as a marked set of points on the line,
then to say that is an upper bound fof means that every element §fis to the
‘left’ of u, or at least none of them are definitely to the rightof

Example 1.17.(a) LetS = [0,1] = {z € R: 0 < z andz < 1} = the closed
interval from 0 to 1 (inclusive).
Thenu = 2 is an upper bound fof because € S = s <1 = s < 2.
Alsou = 1is an upper bound. As well as being an upper bourdS and so
here we have 1 as a greatest elemerti.of

(b) S = (—00,-2) ={z € R: 2z < —2} = the open interval to the ‘left’ of-2
hasu = —1 as an upper bound.
It also hasu = —2 as an upper bound, the “most efficient” upper bound in
some sense. But there is no greatest elemefit in

(c) The empty sef = () is a subset oR. Any numberu € R is an upper bound
for S in this case.
The reason for that is thatig true that

s < u holds for eacls € S.

The reason it is true is that there are no elementsS and so there are no
elements we need to check the inequality about. We say that the statement is
vacuousltrue.

We now state our last property f@&.
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Least upper bound principle

(P13) If a setS C R in nonemptyand has an upper bound, then it has a least
upper bound.

By aleast upper boundbr a setS C R we mean an upper bounde R for S
with the property that. < «' for each upper bound of S.

Proposition 1.18. (i) N C R has no upper bound iR
(i) If 2 € Rand0 < z, then there iy € Nwith 1 < z.

Proof. (i) If N C R had an upper bound iR, then (becausé € N and so
N =# () the least upper bound principle says that there would have to be an
upper bound: € R for N.

Now u — 1 cannot be an upper bound fd¥ because: — 1 < u andu is
supposed to bel every upper bound. To say that— 1 is not an upper
bound means that it isot rue to saythatn < u — 1 holds for eacn € N.
To say that is not true means that thisrat least oner € Nwheren > u—1.

Thenn+1 > «. Butn+1 € N as well as: and this contradicts the assertion
thatwu is an upper bound fax.

The contradiction came about because we assumed there was an upper bound
for N and the conclusion we draw is tHdthas no upper bound iR.

@) If zeR,z >0, then% € R and so cannot be an upper boundfo(by the
first part). So there is some € N with n > i It follows (for example by
multiplying both sides by) thatz > *.

O

The first part of the proposition can be thought of as saying that there are no
‘infinitely large’ real numbers.

Proposition 1.19. There is a number. € R with 22 = 2.

Proof. ConsiderS = {z € R : z > 0 andz? < 2}. Notice thatS # () because
1 € S. Itis bounded above by 2. To see this suppose on the contrary and
r > 2. Thenz? > 2z > 22 = 4 > 2, contradictingz? < 2. We conclude that
x < 2foreachr € S, thatis that 2 is an upper bound f6r
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Now the least upper bound principle states that there is a least upper bound
u € Rfor S. Our claim is that:? = 2. If u? # 2 there are two other possibilities
(i) u? < 2 and (ii) u? > 2. We now show that neither (i) nor (ii) are the case.

If > < 2, we claim that there i® € N with u + % € S (and this would
contradictu being an upper bound). Now

1\? 1 1 2u+ 1
@+_):”f+ﬁ5%3§uﬂﬁﬁ+—:u%%u+.
n n n n n n

It follows that (u + %)2 < 2if u? 4+ 245 < 2 or, equivalently if2H < 2 — 2,
Sinceu > 1 € S, we haveu > 0 and so2u + 1 > 0. Thus2H < 2 — ¢/?

is equivalent tol < g;ﬁ We can find am < N with this property by the

proposition above. For suche Nwe then havéu + %)2 < 2andu+= > u > 0.
Henceu + % € S contradictingu an upper bound fof. So (i) is eliminated.
If 2 > 2 we claim that there ia € N so thatu — % is an upper bound fof

(smaller than the least upper boufichnd so a contradiction). We choosec N

o) that(u — %)2 > 2. This we can do because

1\? 9 u 1 9 U
u——| =u=2—+ 5 >u —2-
n n o n n

and this will be> 2 we ensure

w?—2% 59
n
or, equivalently
w?—2> 2%,
n

We can arrange this by choosinge N (via the proposition above) so that or
% < % This is possible because> 0 and we are assuming — 2 > 0.

Having chosem so that(u — %)2 > 2 we claim now that, — < is an upper
bound forS. If not therez € S with z > u — 1. Sinceu > 1 € Sandl/n < 1
we haveu — + > 0. So

(o) > ()
r>rxlu——|)>u—— > 2
n n

contradictinge € S.
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So now we have shown that there is an upper bound1/n for S strictly
smaller than the supposed least upper baunthus (i) is not possible.

Having eliminated the possibilities (i) and (ii), we are left with= 2 as the
only remaining possibility. Il

Remark 1.20. A useful remark is that a sét C R can only have one least upper
bound. Ifu is a least upper bound, then we have «’ for each upper bound'.

If u; is also a least upper bound then also< «’ for each upper bound’. So
takingu' = w4 in the property ofu we have

u < up
and takingu’ = u in the property of.; we have
U < U.

It follows thatu = w;.

So we can refer tthe least upper bound of a setc R if S # () andS has
some upper bound.

There is agreatest lower bound principle as well as a least upper bound
principle, but one follows from the other.

First alower boundfor a setS C R is a number € R satisfying/ < s for
eachs € S. A greatest lower bound for a s€tC R is a lower bound for S with
the property that’ < ¢ for each upper bound for S. As with upper bounds,
there can only be one least upper bound for a&Sstr none).

There is a way to flip between upper and lower bounds (but not for the same
set). IfZ is an upper bound faf C R (that is/ < s for eachs € S) then—/ is an
upper bound for the st = {—s : s € S} (thatis—s < —/ for eachs € S, or
t < —( for eacht € T'). One can also check théis a greatest lower bound for
S exactly when—/ is a least upper bound far, and this is why the least upper
bound principle tells us that the following is true:

Greatest lower bound principle: If S C R is nonempty and has a
lower bound, then it has a greatest lower bound.

We say that a subsét C R is bounded abové there is some upper bound for
S. Also S is calledbounded belovif there is some lower bound fd.

A setS C R is boundedf it is bothbounded above and bounded below.

When a subsef C R has a least upper bound we will often write (3 for
that least upper bound. Another notation in common usep$s), wheresup is
an abbreviation for the worsupremum
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When a subsef C R has a greatest lower bound we will often write @b
for that greatest lower bound. Another notation in common usef{s), where
inf is an abbreviation for the wordfimum

To make life complicated, we may sometimes refer to(fib sup(S) or
inf(S) when we are discussing the possible existence of these for a particular
S. We might write ‘findsup(.S) or show that it does not exist’ instead of ‘find the
least upper bound fa$ or show that there is no least upper bound'.

Definition 1.21. Theabsolute valué¢r| of z € R is defined by the rule

2] = z ifz>0
=Y =2 ifz<o0

Example 1.22.| — 3| = —(—3) =3
Note 1.23.|z| > 0 for eachz € R.
Theorem 1.24 (Triangle inequality). If 2,y € R, then|z + y| < |z| + |y|.
Proof. The proof relies on considering the 4 separate cases
1. x> 0andy >0
2. r<0andy <0
3.z>0andy <0
4. r <0andy >0

(and these cover all possibilities forandy).
Here are the arguments

1. If z > 0andy > 0, thenz 4+ y > 0 and so
[z +yl=2+y=|z|+]y
That is equality holds and g0 + y| < |z| + |y| is valid.
2. Ifx < 0andy < 0, thenx + y < 0 and so
[z +yl = —(z+y) = (=2) + (=y) = |z + ||

and again equality holds.
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3. If z > 0 andy < 0, we consider two sub cases

@z+y=>0
Then we have
lt+yl=z+y

and|z| + |y| = « + (—y). The desired inequalityr + y| < |z| + |y|
then reduces to + y < x — y, which is equivalent (adding z to both
sides) toy < —y and this is in turn equivalent 2y < 0 — which we
know to be true in this case.

(b) z+y <0
We have thenz + y| = —(z + y) = —z — y and againz| + |y| =
z + (—y). The desired inequalityr + y| < |z| + |y| then reduces to
—x —y < x —y and this is equivalent te.x < x or 0 < 2z — which
we know to be true in this case.

4. The caser < 0 andy > 0 is similar to the previous case (if we swop the
roles ofz andy).

]

Remark 1.25. We can help to see our way by looking at suitable pictorial or
graphical representations of what we are doing. (But we do not want to rely on
the pictures for the proof as it is sometimes possible to draw pictures that are
misleading or are over simplified.)

We can think of pointsz € R as points on a number line, and| as the
‘distance’ fromz to the origin on the line. Fat, b € R we can think ofla — b| as
the distance betweenandb.

If a,b,c € R and we taker = a — b, y = b — c in the triangle inequality 1.24
then we get

(a=b)+(b—c)| <la—b|+b—cl.
This simplifies to
ja—c < la—b+[b—cl, 1)
or
distancéa, c¢) < distancéa, b) + distancéb, )

The ‘triangles’ we can see on a line are degenerate (or flattened) triangles, but the
latter way of looking at it says that the length of one side of a triangle is at most
the sum of the lengths of the other two sides.
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We can recover Theorem 1.24 from knowing (1) holds forall ¢ € R. Fix
x,y € R any two numbers and take= =, b = 0 andc = —y in (1). This means
that Theorem 1.24 is equivalent to the statement that (1) holds fariak € R
(and explains the name of the thorem).

Remark 1.26. As mentioned previously, we will not prove that there is a system
of numbers where all the properties (P1) to (P13) are satisfied. It is possible to
prove it, but it is laborious and maybe not all that enlightening.

It is further possible to prove that there can really only be one such system of
numbers. Given two such systems, satisfying all of (P1) to (P13), there has to be a
way to match up the numbers in one system with the numbers in the other so that
all the things we consider (addition, multiplication, positive) match between one
system and the other. Again, we will not try to prove that this is true.

We will just takeR (with its properties) as given and work with it.



