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Before we start in earnest, I’d like to give some kind of preview and introduc-
tion to the course.

‘Analysis’ means, more or less, calculus from a theoretical point of view. We
will not be concerned very much with how to do new things, but more about
revisiting topics you have heard about before. During our new visit, we will aim
to explain why everything works as it does in quite some detail. Our explanations
will be logical and develop more or less everything from scratch. You can use
your experience of calculus as a guide to where we are going, but we now want to
prove that everything works.

We will need to start somewhere, and then develop everything from there. We
could start with almost nothing (say, just the language of sets, subsets, elements
and so on) and develop everything from there. However, this takes rather too long
and we will instead start with (real) numbers as more or less understood. However,
we will be fairly careful about even that, and our approach is to start with a list of
key properties we expect numbers to have. Many of them will be so simple you
might wonder why we bother to state them, but some are a little less obvious. In
the end we will have a list of properties of the real numbers that cannot be satisfied
by any other system of numbers.

If we were to start with sets only, we would develop thenatural numbers

N = {1, 2, 3, . . .},

the numberzero, thenatural numbers including 0

N0 = {0, 1, 2, 3, . . .},

the integers(or whole numbers)

Z = {0, 1,−1, 2,−2, 3,−3, . . .}

and therational numbers

Q =

{
p

q
: p, q ∈ Z, q 6= 0

}
.

My notation forN andN0 is maybe not always used (and some books would
have 0 inN, while using some other notation for the positive integers — you might
need to check what their notation is when you pick up a book).
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Now, our first point is that the rational numbers are not enough. The first
‘proof’ we give is that

√
2 is not a rational number.

To state it this way is a bit odd, because we might interpret it as follows. Say
rational numbers are all we know about. Then there is not going to be a number√

2 and so we are on the one hand referring to a number
√

2 and then showing
there is no such number. To avoid such a paradox, we can state the result like this:

Proposition 0.1. There is no numberp
q
∈ Q with(

p

q

)2

= 2

There are some other ways to phrase it, maybe equally as good or a little better
that the above. Even if you think they are no better, it can help to have differnt
ways to sty things. It can help you to think about what the statement means, or to
understand the point.

A rational numberp/q implies (at least in our notation)p, q ∈ Z andq 6= 0.
We didnot make that really clear above and so perhaps we should have said:

There is nor ∈ Q with r2 = 2.

or, we could have phrased it like this:

There are no integersp, q ∈ Z with q 6= 0 andp2 = 2q2.

There is a geomerical way to look at the statement. It is sometimes a help to
be able to visualise statements. Suppose we construct a right triangle where both
legs are one unit in length (or the same length).
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According to Pythagorus’ theorem the (ratio of the) lenghth of the hypoteneuse
(to the lenghths of the sides) must be

√
2. Our proposition is saying that we cannot

construct this same length by takingp times the length of the sides and diving that
in q equal parts.

This fact was discovered over 2000 years ago by the Greek geometers and it
disturbed them greatly.

Proof. (or the proposition). We will prove the statement in the formulation that
there are no integersp, q ∈ Z with q 6= 0 andp2 = 2q2. It will help to keep in
mind thatp2 = 2q2 is the same as(p/q)2 = 2 as long as we rule outq = 0.

We will start be assuming that we managed to findp, q ∈ Z with q 6= 0 and
p2 = 2q2. Our aim then is to show that this could not be so.

Aside: The punchline of the proof is based on ideas relating to even
and odd numbers. Ifp2 = 2q2, thenp2 must be even. But, as squares
of odd numebrs are still odd, this means thatp has to be even, or
divisible by 2. Thereforep2 is actually divisible by22 = 4. As p2 =
2q2 this means thatq2 has to be even. Soq has to be even as well as
q. Now, there is no real problem with havingp andq both even, but it
does mean that the fractionp

q
could be ‘simplified’ by dividing above

and below by2.

What we will do then to make this into a punchline is to arrangep and
q to that all common factors (of 2 at least) have been divided out of
p/q.

The integerp we start with might or might not be divisible by2. If it is divisible
by 2 we can writep as 2 times a whole number and that whole number might
be divisible by 2 again (or not). However, we cannot be able to dividep by 2
indefintely unlessp = 0. Since we are assumingp = 2q2 andq 6= 0, we cannot
havep = 0. So, after dividing out as many powers of 2 as possible fromp we end
up with

p = 2np1

wheren ≥ 0 andp1 are integers andp1 is odd. Similarly we can write

q = 2mq1 (m, q1 ∈ Z, m ≥ 0, q1 odd).

Thus

p

q
=

2np1

2mq1
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=

{
2n−mp1

q1
if n ≥ m

p1

2m−nq1
if n < m

=
p2

q2

where at least one ofp2, q2 is odd. Fromp2 = 2q2 it follows thatp2
2 = 2q2

2.
Now we can say thatp2

2 is even, hencep2 must be even (squares of odd num-
bers are still odd). Thusp2

2 is divisible by22 = 4 and so2q2
2 is divisible by 4. So

q2
2 is divisible by 2, and soq2 must be even. Now we have concluded thatp2 and

q2 are both even, contradicting what we arranged — that at least one ofp2 andq2

is odd.
The reason we got to this contradiction was that we assumed we could find

p, q ∈ Z so thatp2 = 2q2 andq 6= 0. The only way to avoid this contradiction is
that there are no such integersp, q (or no sqaure root of 2 inQ).

Exercise 0.2.Show that there is no square root of 3 inQ.


