Linear Algebra 252
PRACTICE EXAMINATION SOLUTIONS

1. Find a basis for the row space, the column space, and the nullspace of the following matrix
A. Find rank A and nullity A. Verify that every vector in the row space of A is orthogonal to

every vector in the nullspace of A.

1 -1 7 3 4
1 -1 2 31
A= -2 2 1 -6 1
0 4 16 0 8
Reduce A, getting the 4 x 5 matrix
1 00 3 =3/5
01 0 0 —2/5
001 0 3/5
0000 0

The row space has as basis the three non-zero rows of the reduced matrix, i.e. {(1,0,0,3,—-3/5),
(0,1,0,0,-2/5),(0,0,1,0,3/5)}. The column space has basis the first three columns of the
original matrix A, since the “first one’s” of the reduced matrix appear in these columns:
{(1,1,-2,0),(—1,-1,2,4), (7,2,1,16) }. For the nullspace, using the reduced matrix, we see that
x4 and x5 are arbitrary, and that z1 = —3z4+3/5 x5, 29 = 2/5 x5, and x3 = —3/5x5. Thus, the
nullspace consists of all vectors in R® of the form (—3x4+3/5 x5,2/5 x5, —3/5 x5, 4, T5), which
we write as all vectors of the form x4(—3,0,0,1,0) + z5(3/5,2/5,—3/5,0,1). In other words, a
basis for the nullspace is {(—3,0,0,1,0), (3/5,2/5,—3/5,0,1)}. The rank of A is 3 and the nullity
of A is 2; note that Rank A+ Nullity A = 5. Finally, to verify that every vector in the row space
is orthogonal to every vector in the nullspace, it is enough to check the basis vectors. So, there
are 6 things to check, since there are 3 vectors in the basis of the row space and 2 vectors in the
basis for the nullspace. Checking the first one: (1,0,0,3,—3/5)-(—3,0,0,1,0) = 0. The other 5

verifications are left to you.
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Find an orthogonal matriz P which diagonalizes A. Using this or otherwise, calculate A®.

2.(a). Let A=



(b). Let A be a symmetric matriz, and let A and p be two, distinct eigenvalues of A. Let x be an
eigenvector of A corresponding to A and let y be an eigenvector of A corresponding to j. Prove

that x 1 y.

(a). The first step is to find the eigenvalues of A. So, solving det(A — \I) =

2\ 1 1
det 12—\ 1| =o,
1 12—

we get three roots A = 1,A =1, A =4 (i.e. 1 is a double root).
The second step is to find the corresponding eigenvectors. Our goal is to find two perpendicular
etgenvectors, each of length 1, corresponding to X = 1, and a third eigenvector, of length 1,

corresponding to A = 4 which is to be perpendicular to the first two. For A = 1, we therefore

111 111
consider | 1 1 1 |, obtaining the reduced form | 0 0 0 |, which yields the general so-
111 0 00

lution (—xz9 — w3, z2,23), where x5 and xg are arbitrary. Letting 2o = 1 and x3 = 0, we get
u; = (—1,1,0) as an eigenvector. Then, letting o = 0 and x3 = 1, we get ug = (—1,0,1) as
another eigenvector. Note however, that neither u; nor us has length 1; moreover, u; is not

orthogonal to us. So, we must apply the Gram-Schmidt process:

Let vy = uy/||u1]|, obtaining v; = (=1/v/2,1/v/2,0). Then, take

Ug— < Ug2,vV1 > V1

vy =
llug— < ug,v1 > vy’

obtaining vy = (—1/v/6, —1/v/6,2/+/6). (Verify that both v; and vg are unit vectors, that they

are both eigenvectors corresponding to A = 1, and finally that v; L v9.)

Now, we find the third eigenvector corresponding to A = 4. So, to reduce the matrix
-2 1 1 1 0 -1
1 =2 1 |. We obtain the matrix [ 0 1 —1 |. Solving, we get x3 is arbitrary,
1 1 -2 00 O

x1 = x9 = x3. Thus, for example, ug = (1,1, 1) is an eigenvector. However, we need to normalise
u3, i.e. make it have length 1. So, the vector we seek is us/||us|| = (1/v/3,1/3/3,1//3).

Therefore the orthogonal matrix we seek is

~1/vV/2 —1/v/6 1/V3
P= 1/vV2 —1/V6 1/V3
0 2/vV6 1/V3

The point of all of this: For this P, we have

1
PTAP=D=1| 0
0

O = O
- O O



Thus, A = PDPT, so that A®* = PD8PT = P pPT.

S O =
o O O

0
1
0 4

(b). A < x,y >=< Az,y >=< Azx,y >=< z,ATy >=< z, Ay >, since A is symmetric,
=< z,uy >= p < x,y > . Therefore, (A — p) < z,y >= 0. Now, we are given that A # p. Thus,
< x,y > must be 0, i.e. x L y.

3. In each case, either explain why the set S in question is a vector space and find a basis and

dimension of S, or explain why S is not a vector space.

(a). S ={(x1,29,73,74) ER* : 221 + 23 — 14 =0 and x1 — z3 — 224 = 0}.

(b). S = all 4 x 4 matrices which are anti-symmetric. (Recall that A is anti-symmetric
means that AT = —A.)

(c). S = all functions f : R — R such that f'(0) =1

Part(a). Since S is a subset of the vector space R*, we need only show that if (21, z2, 23, 74)
and (y1, Y2, Y3, y4) are both in S and c¢ is a scalar then their sum (z1 4+ y1, x2 +y2, 3+ Y3, T4+ Ya)
and the scalar product (cxy, cxe, cxs, cxy) are both in S as well. For example, to verify the second
condition, 2(cx1) + (cx3) — (cxa) = c(2x1 + x3 —x4) = ¢- 0 = 0 and (cz1) — (cx3) — 2(cxq) =

c(x1 — w3 — 2x4) = ¢ - 0 = 0. The verification of the first condition is just as simple.

1
_ 4. |20 1 ~1 v2 |0
S ={(w1,72,73,24) €R" : [1 0 -1 -2 zz | [ 0]
T4

1 0 0 —1
0 01 1
x4(1,0,—1,1) is obtained. Thus, a basis for S consists of the two vectors (0, 1,0,0), (1,0, —1,1).

dim S = 2.

Reducing, we get { } , from which the solution (z4,x2, —z4,24) = x2(0,1,0,0) +

Part (b). We argue as in part (a). Here, S is a subset of the vector space of all 4 x4 matrices,
and so we must only verify that if A and B are anti-symmetric and c is a scalar, then A+ B and
cA are also anti-symmetric. For example, (A + B)T = AT + BT = (~A) + (-B) = —(A + B).
Similarly, one shows that (cA)? = —(cA).



Any 4 x 4 anti-symmetric matrix A is of the form

0 a2 a1z aus
A- | T2 0 az3 anx
—a13 —ag3 0 asy

—aiqs —aga —azs 0O

which we can write as a sum of 6 matrices

0100 0010 00 00O
A= ap -1 0 0 0 +ars 0 000 b otam 00 0O
00 00 -1 0 0 0 00 01
0000 0 000 00 -1 0

Since it is easy to see that these six matrices are linearly independent, they form a basis for .S,

whose dimension is 6.

Part (c). Note that if f and g are in S, then f'(0) = ¢/(0) = 1. However, (f+g)'(0) =2 # 1.

Hence S is not a vector space.

4. Let V' be a vector space, and let {vy,...,vp} C V.

(a). Define the term {vy,...,vx} is linearly independent.

(b). Prove: If {vi,ve,vs,v4,v5} is a linearly independent set, then so is {v1,va, v3}.

(c). Find all k € R such that the set {(1,2,3),(0,—2,1),(1,k2,3k — 1)} is linearly independent.

Interpret geometrically.

Part (a). The set of vectors {v, ..., vy } is linearly independent means that the only possible

solution cy, ..., c; to the equation cjvy + covo + ... + cpvp =0is ¢ =0,c0 =0, ..., ¢ = 0.

Part (b). Suppose that {v,ve,v3,v4,v5} is a linearly independent set, and let us show that
the subset {v1,v2,v3} is also linearly independent. So, consider the equation ¢jvy + cova+c3vz =
0. If {v1, v2, v3} were not linearly independent (i.e. if it were linearly dependent) then there would
be a solution where not all the ¢, co, c3 were 0. Then, if we were to set ¢4 = 0 and ¢5 = 0, there
would be a solution to the equation cjvy + ... + csv5 = 0 where not all the ¢’s are zero. But, this

contradicts our assumption that {v1,ve,vs,vs,v5} is a linearly independent.

Part (c). The set of k € R such that the set {(1,2,3),(0,—-2,1),(1,k% 3k — 1)} is linearly



independent is the same as the set of k& € R such that det (1) —; :1)) # 0. Solving
1 k% 3k—1

k% +6k —10 = 0, we get k = —34+/19. Thus, for all other k, {(1,2,3), (0, —2,1), (1, k%, 3k —1)}

is linearly independent. The geometric interpretation is that if & = —3 4 /19, then the three

vectors {(1,2,3),(0,—2,1),(1,k% 3k —1)} lie on the same plane (and hence they are not linearly

independent). For all other values of k, {(1,2,3),(0,—2,1),(1,k? 3k — 1)} are not co-planar.

5. In each case, either diagonalise the matrix or explain why the matrix cannot be diagonalised.

5 9 -9 0
(@) A=( " 3] (b A= 8 —8 0
~14 14 0

Part (a). It is easy to see that the only eigenvalue of A is the double root A\ = —3. Now,

—3-A 27\ i (01
0 _3_)\>w1th)\——3, we get the matmx(o 0>.Thus,

we get as eigenvector any vector of the form (x1,0). However, there is not a set of two linearly

reducing the matrix <

independent eigenvectors corresponding to this double root. Hence, the matrix is not diagonal-

isable.

Part (b). First, the eigenvalues of A are obtained, as usual, by solving det(A — AI) = 0.
That is, one must solve the cubic A2(A — 1) = 0.
Second, let’s find two-if possible-linearly independent eigenvectors corresponding to the double
root A = 0 : We get x5 and x3 are arbitrary, and xy; = x9. Thus, there are indeed 2 linearly

indendent eigenvectors, (1,1,0),(0,0,1). Corresponding to A = 1, we find a third eigenvector

1 0 -9
(—9,—8,14). Thus, if we take P = | 1 0 —8 |, then P~'AP will be the diagonal matrix
01 14
0 00
D=0 0 0
0 01



6. Let S : R2 — R? be defined as rotation by an angle @ and let T : R? — R? be the projection
onto the r—axis.

(a). Find the standard matrices corresponding to S and T.

(b). Find the real eigenvalues, if any, of S and of T. Interpret your answers geometrically.

(c¢). Determine whether SoT =T o S.

cosf) —sinf 10
Part(a). S < <in 0 COSG>,andT<—> < N

Part(b). S has no real eigenvalues, unless 6 is a multiple of 7. The geometric reason is that
a rotation will not take a vector into a multiple of itself (unless the rotation is through a very
special angle of 0 or +7 or +27 or ...).

T has eigenvalues 0 and 1, with corresponding eigenvectors (1,0) and (0, 1), respectively. Note
that T" takes (1,0) to 1 times itself, while T takes (0, 1) to 0 times itself.

Part (c). SoT is (almost) never equal to T'o S. One way to see this is to simply multiply the
two matrices S-T and T'- S, and verify that the resulting products are indeed different. Another
way is to realise that, geometrically, T'0 .S (x1, 22) is always a vector on the x—axis. On the other
hand, S o T'(z1, z2) does not lie on the x— axis (unless the angle of rotation 6 is a multiple of 7.

can be any vector in R?. So the two compositions, S o T and T o S, are different.



