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1 Analytical Exercises

(a)

Â→ Â⊗ 1 B̂ → 1⊗ B̂

[
Â⊗ 1,1⊗ B̂

]
=
(
Â⊗ 1

)(
1⊗ B̂

)
−
(

1⊗ B̂
)(

Â⊗ 1
)

= Â1⊗ 1B̂ − 1Â⊗ B̂1

= Â⊗ B̂ − Â⊗ B̂
= 0 =⇒ Â⊗ 1 and 1⊗ B̂ always commute

(b)

ŝx =
ℏ
2

(
0 1
1 0

)
ŝy =

ℏ
2

(
0 −i
i 0

)
ŝz =

ℏ
2

(
1 0
0 −1

)

ŝx |↑⟩ =
ℏ
2

(
0 1
1 0

)(
1
0

)
ŝx |↓⟩ =

ℏ
2

(
0 1
1 0

)(
0
1

)
=

ℏ
2

(
0
1

)
=

ℏ
2

(
1
0

)
=

ℏ
2
|↓⟩ =

ℏ
2
|↑⟩

ŝy |↑⟩ =
ℏ
2

(
0 −i
i 0

)(
1
0

)
ŝy |↓⟩ =

ℏ
2

(
0 −i
i 0

)(
0
1

)
=

ℏ
2

(
0
i

)
=

ℏ
2

(
−i
0

)
=
iℏ
2
|↓⟩ = − iℏ

2
|↑⟩

ŝz |↑⟩ =
ℏ
2

(
10
0 −1

)(
1
0

)
ŝz |↓⟩ =

ℏ
2

(
10
0 −1

)(
0
1

)
=

ℏ
2

(
1
0

)
=

ℏ
2

(
0
−1

)
=

ℏ
2
|↑⟩ = −ℏ

2
|↓⟩

[ŝx, ŝy] |↑⟩ = ŝxŝy |↑⟩ − ŝy ŝz |↑⟩ [ŝx, ŝy] |↓⟩ = ŝxŝy |↓⟩ − ŝy ŝz |↓⟩

= ŝx
iℏ
2
|↓⟩ − ŝy

ℏ
2
|↓⟩ = ŝx

(
− iℏ

2
|↑⟩
)
− ŝy

ℏ
2
|↑⟩

=
iℏ2

2
|↑⟩+ iℏ2

2
|↑⟩ = − iℏ

2

2
|↓⟩ − iℏ2

2
|↓⟩

= iℏ2 |↑⟩ = −iℏ2 |↓⟩
iℏŝz |↑⟩ = iℏ2 |↑⟩ iℏŝz |↓⟩ = −iℏ2 |↓⟩

=⇒ [ŝx, ŝy] |↑⟩ = iℏŝz |↑⟩ =⇒ [ŝx, ŝy] |↓⟩ = iℏŝz |↓⟩

=⇒ [ŝx, ŝy] (α |↑⟩+ β |↓⟩) = iℏŝz (α |↑⟩+ β |↓⟩)
∴ [ŝx, ŝy] = iℏŝz
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The states on the Bloch sphere represent normalised states of a qubit, similarly to how points on
a unit sphere are a unit distance from the origin. These states in the qubit Hilbert space Hq can be
parameterised as a point on the unit sphere S2 in terms of spherical or Cartesian coordinates. For
example,

Hq ∋ |↑⟩ ∼ (1, 0, ϕ)sph = (0, 0, 1)Cart ∈ S2

Hq ∋ |↓⟩ ∼ (1, π, ϕ)sph = (0, 0,−1)Cart ∈ S2

Hq ∋ |+⟩ =
1√
2
(|↑⟩+ |↓⟩) ∼

(
1,
π

2
, 0
)
sph

= (1, 0, 0)Cart ∈ S2

Hq ∋ |−⟩ =
1√
2
(|↑⟩ − |↓⟩) ∼

(
1,
π

2
, π
)
sph

= (−1, 0, 0)Cart ∈ S2

Hq ∋ |→⟩ =
1√
2
(|↑⟩+ i |↓⟩) ∼

(
1,
π

2
,
π

2

)
sph

= (0, 1, 0)Cart ∈ S2

Hq ∋ |←⟩ =
1√
2
(|↑⟩ − i |↓⟩) ∼

(
1,
π

2
,
3π

2

)
sph

= (0,−1, 0)Cart ∈ S2

It is important to note that the states on the Bloch sphere are simply visual representations of normalised
states of a qubit, where the states at the poles of the x-, y-, and z-axes represent eigenstates of the
respective Pauli matrices, and do not follow the same rules as vectors on a sphere. For example,

⟨↑ | ↓⟩ = 0 ̸= (0, 0, 1)Cart · (0, 0,−1)Cart = −1

⟨↑ |+⟩ = 1√
2
̸= (0, 0, 1)Cart · (1, 0, 0)Cart = 0
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(c)

|↑↑⟩ = |↑⟩ ⊗ |↑⟩ |↓↑⟩ = |↓⟩ ⊗ |↑⟩

=

(
1
0

)
⊗
(

1
0

)
=

(
0
1

)
⊗
(

1
0

)

=


1
0
0
0

 =


0
0
1
0


|↑↓⟩ = |↑⟩ ⊗ |↓⟩ |↓↓⟩ = |↓⟩ ⊗ |↓⟩

=

(
1
0

)
⊗
(

0
1

)
=

(
0
1

)
⊗
(

0
1

)

=


0
1
0
0

 =


0
0
0
1


Ŝz = ŝz ⊗ 1 + 1⊗ ŝz

Ŝz |↑↑⟩ = ŝz |↑⟩ ⊗ 1 |↑⟩+ 1 |↑⟩ ⊗ ŝz |↑⟩ Ŝz |↓↑⟩ = ŝz |↓⟩ ⊗ 1 |↑⟩+ 1 |↓⟩ ⊗ ŝz |↑⟩

=
ℏ
2
|↑⟩ ⊗ |↑⟩+ |↑⟩ ⊗ ℏ

2
|↑⟩ = −ℏ

2
|↓⟩ ⊗ |↑⟩+ |↓⟩ ⊗ ℏ

2
|↑⟩

= ℏ |↑↑⟩ = 0

Ŝz |↑↓⟩ = ŝz |↑⟩ ⊗ 1 |↓⟩+ 1 |↑⟩ ⊗ ŝz |↓⟩ Ŝz |↓↓⟩ = ŝz |↓⟩ ⊗ 1 |↓⟩+ 1 |↓⟩ ⊗ ŝz |↓⟩

=
ℏ
2
|↑⟩ ⊗ |↓⟩+ |↑⟩ ⊗ −ℏ

2
|↓⟩ = −ℏ

2
|↓⟩ ⊗ |↓⟩+ |↓⟩ ⊗ −ℏ

2
|↓⟩

= 0 = −ℏ |↓↓⟩

Thus {|↑↑⟩ , |↑↓⟩ , |↓↑⟩ , |↓↓⟩} are eigenstates of Ŝz with corresponding eigenvalues {ℏ, 0, 0,−ℏ}.

(d)

Ĥ = Jŝ1 · ŝ2
= J (ŝ1,xŝ2,x + ŝ1,y ŝ2,y + ŝ1,z ŝ2,z)

= J [(ŝx ⊗ 1) (1⊗ ŝx) + (ŝy ⊗ 1) (1⊗ ŝy) + (ŝz ⊗ 1) (1⊗ ŝz)]
= J (ŝx ⊗ ŝx + ŝy ⊗ ŝy + ŝz ⊗ ŝz)[

Ĥ, Ŝz

]
= [J (ŝx ⊗ ŝx + ŝy ⊗ ŝy + ŝz ⊗ ŝz) , ŝz ⊗ 1 + 1⊗ ŝz]

1

J

[
Ĥ, Ŝz

]
= [ŝx ⊗ ŝx, ŝz ⊗ 1] + [ŝx ⊗ ŝx,1⊗ ŝz]

+ [ŝy ⊗ ŝy, ŝz ⊗ 1] + [ŝy ⊗ ŝy,1⊗ ŝz]
+ [ŝz ⊗ ŝz, ŝz ⊗ 1] + [ŝz ⊗ ŝz,1⊗ ŝz]

= ŝxŝz ⊗ ŝx − ŝz ŝx ⊗ ŝx + ŝx ⊗ ŝxŝz − ŝx ⊗ ŝz ⊗ ŝx
+ ŝy ŝz ⊗ ŝy − ŝz ŝy ⊗ ŝy + ŝy ⊗ ŝy ŝz − ŝy ⊗ ŝz ⊗ ŝy
+ ŝz ŝz ⊗ ŝz − ŝz ŝz ⊗ ŝz + ŝz ⊗ ŝz ŝz − ŝz ⊗ ŝz ⊗ ŝz

= − [ŝz, ŝx]⊗ ŝx − ŝx ⊗ [ŝz, ŝx] + [ŝy, ŝz]⊗ ŝy + ŝy ⊗ [ŝy, ŝz] + 0

= − iℏŝy ⊗ ŝx − ŝx ⊗ iℏŝy + iℏŝx ⊗ ŝy + ŝy ⊗ iℏŝx
= 0

=⇒
[
Ĥ, Ŝz

]
= 0
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As Ĥ and Ŝz commute, we expect that they have some common eigenstates. |↑↑⟩ and |↓↓⟩ are non-
degenerate eigenstates of Ŝz, and so should also be eigenstates of Ĥ. |↑↓⟩ and |↓↑⟩ are degenerate
eigenstates of Ŝz with eigenvalue 0, and so some linear combinations of these should also be eigenstates
of Ĥ. Therefore, the eigenstates of Ĥ can be given by {|↑↑⟩ , |↓↓⟩ , α1 |↑↓⟩+ β1 |↓↑⟩ , α2 |↑↓⟩+ β2 |↓↑⟩},
where αi, βi are to be determined.

(e)

σ̂x ⊗ σ̂x =

(
0 1
1 0

)
⊗
(

0 1
1 0

)
σ̂y ⊗ σ̂y =

(
0 −i
i 0

)
⊗
(

0 −i
i 0

)
σ̂z ⊗ σ̂z =

(
1 0
0 −1

)
⊗
(

1 0
0 −1

)

=


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 =


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1



Ĥ = J (ŝx ⊗ ŝx + ŝy ⊗ ŝy + ŝz ⊗ ŝz)

= J

(
ℏ
2
σ̂x ⊗

ℏ
2
σ̂x +

ℏ
2
σ̂y ⊗

ℏ
2
σ̂y +

ℏ
2
σ̂z ⊗

ℏ
2
σ̂z

)

=
ℏ2J
4




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

+


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

+


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1




=
ℏ2J
4


1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1


We can find the eigenvalues for the eigenstates {|↑↑⟩ , |↓↓⟩} by acting Ĥ on each state.

Ĥ |↑↑⟩ = ℏ2J
4


1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1




1
0
0
0

 Ĥ |↓↓⟩ = ℏ2J
4


1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1




0
0
0
1



=
ℏ2J
4


1
0
0
0

 =
ℏ2J
4


0
0
0
1


=

ℏ2J
4
|↑↑⟩ =

ℏ2J
4
|↓↓⟩

The eigenstates {α1 |↑↓⟩+ β1 |↓↑⟩ , α2 |↑↓⟩+ β2 |↓↑⟩} can be determined by acting Ĥ on α |↑↓⟩ + β |↓↑⟩
and solving for α, β.

Ĥ (α |↑↓⟩+ β |↓↑⟩) = ℏ2J
4


1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1




0
α
β
0



=
ℏ2J
4


0

−α+ 2β
2α− β

0
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By inspection, α = β = 1√
2
and α = −β = 1√

2
correspond to normalised eigenstates:

Ĥ
1√
2
(|↑↓⟩+ |↓↑⟩) = ℏ2J

4


0
1√
2
1√
2

0

 Ĥ
1√
2
(|↑↑⟩ − |↓↓⟩) = ℏ2J

4


0
− 3√

2
3√
2

0


=

ℏ2J
4

1√
2
(|↑↓⟩+ |↓↑⟩) = −3ℏ2J

4

1√
2
(|↑↓⟩ − |↓↑⟩)

Thus

{
|↑↑⟩ , |↓↓⟩ , 1√

2
(|↑↓⟩+ |↓↑⟩) , 1√

2
(|↑↓⟩ − |↓↑⟩)

}
are eigenstates of Ĥ with corresponding eigenval-

ues

{
ℏ2J
4
,
ℏ2J
4
,
ℏ2J
4
,−3ℏ2J

4

}
.

(f)

〈
∆X2

1

〉
+
〈
∆X2

2

〉
=
〈
X2

1

〉
− ⟨X1⟩2 +

〈
X2

2

〉
− ⟨X2⟩2

⟨X1⟩ = ⟨n|
1

2

(
â+ â†

)
|n⟩ ⟨X2⟩ = ⟨n|

1

2i

(
â− â†

)
|n⟩

=
1

2

(
⟨n| â |n⟩+ ⟨n| â† |n⟩

)
=

1

2i

(
⟨n| â |n⟩ − ⟨n| â† |n⟩

)
=

1

2

(√
n+ 1 ⟨n+ 1 |n⟩+

√
n+ 1 ⟨n |n+ 1⟩

)
=

1

2i

(√
n+ 1 ⟨n+ 1 |n⟩ −

√
n+ 1 ⟨n |n+ 1⟩

)
= 0 = 0

=⇒
〈
∆X2

1

〉
+
〈
∆X2

2

〉
=
〈
X2

1

〉
+
〈
X2

2

〉
〈
X2

1

〉
+
〈
X2

2

〉
= ⟨n| 1

2

(
â+ â†

) 1
2

(
â+ â†

)
|n⟩+ ⟨n| 1

2i

(
â− â†

) 1

2i

(
â− â†

)
|n⟩

=
1

4
⟨n|
(
â2 + ââ† + â†â+ â†2

)
|n⟩+ 1

−4
⟨n|
(
â2 − ââ† − â†â+ â†2

)
|n⟩

=
1

4
⟨n|
(
â2 + ââ† + â†â+ â†2 − â2 + ââ† + â†â− â†2

)
|n⟩

=
1

2
⟨n|
(
ââ† + â†â

)
|n⟩

=
1

2

[(
â† |n⟩

)†
â† |n⟩+ (â |n⟩)† â |n⟩

]
=

1

2

[(√
n+ 1 |n+ 1⟩

)†√
n+ 1 |n+ 1⟩+

(√
n |n− 1⟩

)†√
n |n− 1⟩

]
=

1

2
[(n+ 1) ⟨n+ 1 |n+ 1⟩+ n ⟨n− 1 |n− 1⟩]

=
n+ 1 + n

2

= n+
1

2

=⇒
〈
∆X2

1

〉
+
〈
∆X2

2

〉
= n+

1

2
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The position and momentum operators for a Harmonic oscillator are given by

X̂ = η
(
â† + â

)
, P̂ =

iℏ
2η

(
â† − â

)
, η ≡

√
ℏ

2mω
,

and we have〈
X̂2
〉
= 2η2

(
n+

1

2

)
,

〈
P̂ 2
〉
=

ℏ2

2η2

(
n+

1

2

)
,

〈
X̂2 +

(η
ℏ
P̂
)2〉

=

(
2η2 +

1

2

)(
n+

1

2

)
.

The wavefunction for the n-th excited state is given by

ψn(x) =
1√
2nn!

Hn

(
x

η
√
2

)
1√
η
√
2π

exp

(
− x2

4η2

)
,

where Hn(x) is the n-th Hermite polynomial. We can see that, for η = 1
2 , X̂1 = X̂ and X̂2 = η

ℏ P̂ .
Therefore the probability distribution in X1X2-space is given by

pn(X1, X2) =

∣∣∣∣ψn

(√
X2

1 +X2
2

)∣∣∣∣2
=

√
2

π

1

2nn!
e−2(X2

1+X2
2)
[
Hn

(√
2 (X2

1 +X2
2 )

)]2
Figure 1 shows distributions for the vacuum state (n = 0) and some excited states (n > 0).

4 2 0 2 4
X1

4

2

0

2

4

X2

n = 0

(a) n = 0.

4 2 0 2 4
X1

4

2

0

2

4

X2

n = 1

(b) n = 1.

4 2 0 2 4
X1

4

2

0

2

4

X2

n = 2

(c) n = 2.

4 2 0 2 4
X1

4

2

0

2

4

X2

n = 5

(d) n = 5.

4 2 0 2 4
X1

4

2

0

2

4

X2

n = 10

(e) n = 10.

4 2 0 2 4
X1

4

2

0

2

4

X2

n = 50

(f) n = 50.

Figure 1: Plots of the probability distribution of the quadrature operators in X1X2-space.
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(g)

⟨α| Ê(z, t) |α⟩ = exp

(
−|α|

2

2

) ∞∑
n=0

(α∗)
n

√
n!
⟨n| iε0

(
âei(kz−ωt) − â†e−i(kz−ωt)

)
exp

(
−|α|

2

2

) ∞∑
m=0

αm

√
m!
|m⟩

= iε0e
−|α|2

∞∑
n,m=0

(α∗)
n
αm

√
n!
√
m!

(
ei(kz−ωt) ⟨n| â |m⟩ − e−i(kz−ωt) ⟨n| â† |m⟩

)
= iε0e

−|α|2
∞∑

n,m=0

(α∗)
n
αm

√
n!
√
m!

(
ei(kz−ωt)

√
n+ 1 ⟨n+ 1 |m⟩ − e−i(kz−ωt)

√
m+ 1 ⟨n |m+ 1⟩

)
= iε0e

−|α|2
(
ei(kz−ωt)

∞∑
n=0

(α∗)
n
α2n+1

√
n!
√

(n+ 1)!

√
n+ 1− e−i(kz−ωt)

∞∑
m=0

(α∗)
m+1

αm√
(m+ 1)!

√
n!

√
m+ 1

)

= iε0e
−|α|2

(
αei(kz−ωt) − α∗e−i(kz−ωt)

) ∞∑
n=0

(
|α|2

)n
n!

= iε0e
−|α|2

(
|α|eiϕei(kz−ωt) − |α|e−iϕe−i(kz−ωt)

)
e|α|

2

= i|α|ε0
(
ei(kz−ωt+ϕ) − e−i(kz−ωt+ϕ)

)
= −2|α|ε0

ei(kz−ωt+ϕ) − e−i(kz−ωt+ϕ)

2i

⟨α| Ê(z, t) |α⟩ = −2|α|ε0 sin(kz − ωt+ ϕ)

The significance of this result is that the expectation value of the electric field operator of a single mode
cavity in a coherent state is the same as what would be calculated in classical optics.

(h)

n̄ =
∑
n

nPn

=
∞∑

n=1

n |⟨n |α⟩|2

⟨n |α⟩ = ⟨n| exp
(
−|α|

2

2

) ∞∑
m=0

αm

√
m!
|m⟩

= exp

(
−|α|

2

2

) ∞∑
m=0

αm

√
m!
⟨n |m⟩

= exp

(
−|α|

2

2

)
αn

√
n!

=⇒ |⟨n |α⟩|2 = e−|α|2 α
2n

n!

=
λne−λ

n!
, λ = |α|2

This is a Poisson distribution with parameter |α|2. Thus the average number of photons is simply the
mean of this distribution, namely n̄ = |α|2, and the probability of finding n photons in a coherent state

|α⟩ is simply Pn = |⟨n |α⟩|2 =
(|α|2)

n
e−|α|2

n! .
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(i)

⟨ψ |ψ⟩ = 1√
2
(⟨β|+ ⟨−β|) 1√

2
(|β⟩+ |−β⟩)

=
1

2
(⟨β |β⟩+ ⟨β | −β⟩+ ⟨−β |β⟩+ ⟨−β | −β⟩)

⟨α | γ⟩ = exp

(
−|α|

2

2

) ∞∑
n=0

(α∗)
n

√
n!
⟨n| exp

(
−|γ|

2

2

) ∞∑
m=0

γn√
m!
|m⟩

= exp

(
−|α|

2 + |γ|2

2

) ∞∑
n,m=0

(α∗)
n
γm√

n!
√
m!
⟨n |m⟩

= exp

(
−|α|

2 + |γ|2

2

) ∞∑
n=0

(α∗γ)
n

n!

⟨β |β⟩ = exp

(
−|β|

2 + |β|2

2

) ∞∑
n=0

(β∗β)
n

n!
⟨−β |β⟩ = exp

(
−| − β|

2 + |β|2

2

) ∞∑
n=0

(−β∗β)
n

n!

= e−|β|2
∞∑

n=0

(
|β|2

)n
n!

= e−|β|2
∞∑

n=0

(
−|β|2

)n
n!

= e−|β|2e|β|
2

= e−|β|2e−|β|2

= 1 = e−2|β|2

⟨β | −β⟩ = exp

(
−|β|

2 + | − β|2

2

) ∞∑
n=0

(β∗ (−β))n

n!
⟨−β | −β⟩ = exp

(
−| − β|

2 + | − β|2

2

) ∞∑
n=0

(−β∗ (−β))n

n!

= e−|β|2
∞∑

n=0

(
−|β|2

)n
n!

= e−|β|2
∞∑

n=0

(
|β|2

)n
n!

= e−|β|2e−|β|2 = e−|β|2e|β|
2

= e−2|β|2 = 1

=⇒ ⟨ψ |ψ⟩ = 1

2

(
1 + e−2|β|2 + e−2|β|2 + 1

)
= 1 + e−2|β|2

≈ 1 for |β|2 ≫ 1

Thus |ψ⟩ is normalised for |β|2 ≫ 1.

⟨n |ψ⟩ = ⟨n| 1√
2
(|β⟩+ |−β⟩)

=
1√
2
(⟨n |β⟩+ ⟨n | −β⟩)

(h) =⇒ ⟨n |α⟩ = exp

(
−|α|

2

2

)
αn

√
n!

9



⟨n |β⟩ = exp

(
−|β|

2

2

)
βn

√
n!

⟨n | −β⟩ = exp

(
−|β|

2

2

)
(−β)n√

n!

=⇒ ⟨n |ψ⟩ = 1√
2

[
exp

(
−|β|

2

2

)
βn

√
n!

+ exp

(
−|β|

2

2

)
(−β)n√

n!

]
=

1√
2
√
n!

exp

(
−|β|

2

2

)
[βn + (−β)n]

=


1√
2
√
n!

exp

(
−|β|

2

2

)
(βn + βn) , n even

1√
2
√
n!

exp

(
−|β|

2

2

)
(βn − βn) , n odd

=


√

2

n!
exp

(
−|β|

2

2

)
βn, n even

0, n odd

Pn = |⟨n |ψ⟩|2

=


2e−|β|2β2n

n!
, n even

0, n odd

(j)

Ĥeff = ℏχ
(
1⊗ |e⟩ ⟨e|+ â†â⊗ σ̂z

)
, |ψ(0)⟩ = |α⟩ ⊗ 1√

2

(
|g⟩+ eiϕ |e⟩

)
, |ψ(t)⟩ = exp

(
− iĤefft

ℏ

)
|ψ(0)⟩

|ψ(t)⟩ = exp

(
− iĤefft

ℏ

)
|α⟩ ⊗ 1√

2

(
|g⟩+ eiϕ |e⟩

)
=

1√
2

[
exp

(
− iĤefft

ℏ

)
|α⟩ ⊗ |g⟩+ eiϕ exp

(
− iĤefft

ℏ

)
|α⟩ ⊗ |e⟩

]

=
1√
2

(
|ψαg(t)⟩+ eiϕ |ψαe(t)⟩

)

10



To see how |ψ(t)⟩ evolves in time, we must determine how |ψαg(t)⟩ = |α⟩ ⊗ |g⟩ and |ψαe(t)⟩ = |α⟩ ⊗ |e⟩
evolve in time. Let us first consider how |ψng(0)⟩ = |n⟩ ⊗ |g⟩ and |ψne(0)⟩ = |n⟩ ⊗ |e⟩ evolve.

|ψng(t)⟩ = exp

(
− iĤefft

ℏ

)
|ψng(0)⟩ |ψne(t)⟩ = exp

(
− iĤefft

ℏ

)
|ψne(0)⟩

=

∞∑
k=0

1

k!

(
− iĤefft

ℏ

)k

|n⟩ ⊗ |g⟩ =

∞∑
k=0

1

k!

(
− iĤefft

ℏ

)k

|n⟩ ⊗ |e⟩

=

∞∑
k=0

(−iχt)k

k!

(
1⊗ |e⟩ ⟨e|+ â†â⊗ σ̂z

)k |n⟩ ⊗ |g⟩ =

∞∑
k=0

(−iχt)k

k!

(
1⊗ |e⟩ ⟨e|+ â†â⊗ σ̂z

)k |n⟩ ⊗ |e⟩
=

∞∑
k=0

(−iχt)k

k!
(0 + n(−1))k |n⟩ ⊗ |g⟩ =

∞∑
k=0

(−iχt)k

k!
(1 + n)

k |n⟩ ⊗ |e⟩

=

∞∑
k=0

(iχnt)
k

k!
|n⟩ ⊗ |g⟩ =

∞∑
k=0

(−iχ(n+ 1)t)
k

k!
|n⟩ ⊗ |e⟩

= eiχnt |n⟩ ⊗ |g⟩ = e−iχ(n+1)t |n⟩ ⊗ |e⟩

Now let us see how |ψαg(t)⟩ = |α⟩ ⊗ |g⟩ and |ψαe(t)⟩ = |α⟩ ⊗ |e⟩ evolve in time.

|ψαg(t)⟩ = exp

(
− iĤefft

ℏ

)
exp

(
−|α|

2

2

) ∞∑
n=0

αn

√
n!
|n⟩ ⊗ |g⟩ |ψαe(t)⟩ = exp

(
− iĤefft

ℏ

)
exp

(
−|α|

2

2

) ∞∑
n=0

αn

√
n!
|n⟩ ⊗ |e⟩

= exp

(
−|α|

2

2

) ∞∑
n=0

αn

√
n!

exp

(
− iĤefft

ℏ

)
|ψng(0)⟩ = exp

(
−|α|

2

2

) ∞∑
n=0

αn

√
n!

exp

(
− iĤefft

ℏ

)
|ψne(0)⟩

= exp

(
−|α|

2

2

) ∞∑
n=0

αn

√
n!
|ψng(t)⟩ = exp

(
−|α|

2

2

) ∞∑
n=0

αn

√
n!
|ψne(t)⟩

= exp

(
−|α|

2

2

) ∞∑
n=0

αn

√
n!
eiχnt |n⟩ ⊗ |g⟩ = exp

(
−|α|

2

2

) ∞∑
n=0

αn

√
n!
e−iχ(n+1)t |n⟩ ⊗ |e⟩

= exp

(
−
∣∣αeiχt∣∣2

2

) ∞∑
n=0

(
αeiχt

)n
√
n!

|n⟩ ⊗ |g⟩ = e−iχt exp

(
−
∣∣αe−iχt

∣∣2
2

) ∞∑
n=0

(
αe−iχt

)n
√
n!

|n⟩ ⊗ |e⟩

=
∣∣αeiχt〉⊗ |g⟩ = e−iχt

∣∣αe−iχt
〉
⊗ |e⟩

We can now determine |ψ(t)⟩ using |ψαg(t)⟩ and |ψαe(t)⟩.

|ψ(t)⟩ = 1√
2

(∣∣αeiχt〉⊗ |g⟩+ ei(ϕ−χt)
∣∣αe−iχt

〉
⊗ |e⟩

)
∣∣∣∣ψ( π

2χ

)〉
=

1√
2

(∣∣∣αe iπ
2

〉
⊗ |g⟩+ ei(ϕ−

π
2 )
∣∣∣αe− iπ

2

〉
⊗ |e⟩

)
=

1√
2

(
|iα⟩ ⊗ |g⟩ − ieiϕ |−iα⟩ ⊗ |e⟩

)
The state vector for χt = π

2 is analogous to the state vector for Schrödinger’s cat, where the coherent
field states act as the state of the cat.
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(k)

|000⟩ = |0⟩ ⊗ |0⟩ ⊗ |0⟩
Apply Ĥ⊗ 1⊗ 1 → Ĥ |0⟩ ⊗ |0⟩ ⊗ |0⟩

=
1√
2
(|0⟩+ |1⟩)⊗ |0⟩ ⊗ |0⟩

Apply
(
|0⟩ ⟨0| ⊗ 1 + |1⟩ ⟨1| ⊗ X̂

)
⊗ 1 → 1√

2
(|0⟩ ⊗ |0⟩+ |1⟩ ⊗ |1⟩)⊗ |0⟩

Apply |0⟩ ⟨0| ⊗ 1⊗ 1 + |1⟩ ⟨1| ⊗ 1⊗ X̂ → 1√
2
(|0⟩ ⊗ |0⟩ ⊗ |0⟩+ |1⟩ ⊗ |1⟩ ⊗ |1⟩)

= |ΨGHZ⟩

Alternatively, the last C-NOT gate can be changed so that the control qubit is the second qubit as
opposed to the first:

1√
2
(|0⟩ ⊗ |0⟩+ |1⟩ ⊗ |1⟩)⊗ |0⟩

Apply 1⊗
(
|0⟩ ⟨0| ⊗ 1 + |1⟩ ⟨1| ⊗ X̂

)
→ 1√

2
(|0⟩ ⊗ |0⟩ ⊗ |0⟩+ |1⟩ ⊗ |1⟩ ⊗ |1⟩)

= |ΨGHZ⟩

Thus the following two circuit diagrams both transform |000⟩ into |ΨGHZ⟩:

|0⟩ H

|ΨGHZ⟩|0⟩

|0⟩

|0⟩ H

|ΨGHZ⟩|0⟩

|0⟩

|ΨGHZ⟩ ⟨ΨGHZ| =
1√
2
(|000⟩+ |111⟩) 1√

2
(⟨000|+ ⟨111|)

=
1

2
(|000⟩ ⟨000|+ |000⟩ ⟨111|+ |111⟩ ⟨000|+ |111⟩ ⟨111|)

ρ̂ = tr3(|ΨGHZ⟩ ⟨ΨGHZ|)

=
1

2
tr(|000⟩ ⟨000|+ |000⟩ ⟨111|+ |111⟩ ⟨000|+ |111⟩ ⟨111|)

ρ̂ =
1

2
(|00⟩ ⟨00|+ |11⟩ ⟨11|)

=
1

2
(|0⟩ ⟨0| ⊗ |0⟩ ⟨0|+ |1⟩ ⟨1| ⊗ |1⟩ ⟨1|)

As the reduced state is separable, it is not entangled.
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2 Numerical Exercises

2.1 Abstract

In this report, the XXZ Heisenberg model is studied. The time evolution of the entanglement entropy
and quantum Fisher information of the system is calculated, and the corresponding relationship between
these quantities is determined. An explanation of how to perform an equivalent experiment on a quantum
computer is also included, before concluding with a brief discussion of the limitations of the report.

2.2 Background

2.2.1 Density Operators, Entropy, & Time Evolution

For a given ensemble state |Ψ⟩, the corresponding density operator ρ̂ is given by [1]

ρ̂ = |Ψ⟩ ⟨Ψ| .

If |Ψ⟩ can be written as a composition of states |Ψa⟩ |Ψb⟩, then the reduced density operator ρ̂a is given
by

ρ̂a = trb(ρ̂) = tr(|Ψb⟩ ⟨Ψb|) |Ψa⟩ ⟨Ψa| ,
and analogously for ρ̂b.

The von Neumann entropy SvN(ρ̂) of a given density operator ρ̂ with eigenvalues {λi} is given by

SvN(ρ̂) = − tr(ρ̂ ln ρ̂) = −
∑
i

λi lnλi, (1)

where lnA = B ⇐⇒ A = eB . The von Neumann entropy of a density operator corresponding to
a pure state (ρ̂2 = ρ̂) is 0. For mixed states, SvN is greater than 0, and thus can be considered as a
determination of how mixed a state is. For high-dimensional systems, the latter expression of Equation 1
involving the operator’s eigenvalues is often far easier to compute than the former involving a matrix
logarithm.

The entanglement entropy Sent(ρ̂) for a system of two subsystems a and b is defined as the von
Neumann entropy of either of the reduced density operators ρ̂a, ρ̂b, i.e. [2]

Sent(ρ̂) = SvN(ρ̂a) = SvN(ρ̂b) , (2)

and is a measure of the degree of entanglement between the two subsystems.
In the Schrödinger picture of quantum mechanics, a state vector |Ψ⟩ = |Ψ(0)⟩ evolves in time via

|Ψ(t)⟩ = U(t) |Ψ(0)⟩ = exp

(
− iĤt

ℏ

)
|Ψ(0)⟩ , (3)

where Ĥ is the (time-independent) Hamiltonian of the system, and U(t) is the time-evolution operator.

2.2.2 Quantum Heisenberg Model

The quantum Heisenberg model [3] is a 1-dimensional quantum spin chain consisting of a number of
spin- 12 particles that interact with their nearest neighbours. The Hamiltonian of a system of N particles
is given by

Ĥ = −
3∑

α=1

N−1∑
j=1

Jασ̂
α
j σ̂

α
j+1,

Ôj ≡ 1⊗ . . .⊗ 1⊗ Ô︸︷︷︸
jth position

⊗1⊗ . . .⊗ 1,

where Jα are coupling constants and σα are the Pauli matrices

σ1 = σx =

(
0 1
1 0

)
, σ2 = σy =

(
0 −i
i 0

)
, σ3 = σz =

(
1 0
0 −1

)
.
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This report focuses on the XXZ model, i.e. Jx = Jy ≡ J , Jz ≡ −U :

Ĥ = −J
N−1∑
j=1

(
σ̂x
j σ̂

x
j+1 + σ̂y

j σ̂
y
j+1

)
+ U

N−1∑
j=1

σ̂z
j σ̂

z
j+1. (4)

The system of N spin sites can be divided into two susbytems, where subsystem i consists of a chain of
Ni spin sites. The quantum Fisher information for the XXZ model at time t is given by [4]

FQ(t) =

N∑
j,k=1

sjsk
〈
Ψ(t)

∣∣ σ̂z
j σ̂

z
k

∣∣Ψ(t)
〉
−

 N∑
j=1

sj
〈
Ψ(t)

∣∣ σ̂z
j

∣∣Ψ(t)
〉2

= N + 2
∑
j<k

sjsk
〈
Ψ(t)

∣∣ σ̂z
j σ̂

z
k

∣∣Ψ(t)
〉
−

 N∑
j=1

sj
〈
Ψ(t)

∣∣ σ̂z
j

∣∣Ψ(t)
〉2

,

sj =

{
1, j ⩽ N1

−1, j > N1
.

(5)

The latter expression is arrived at by noticing that sjsj = 1, σ̂z
j σ̂

z
j = 1, and ⟨Ψ(t) |Ψ(t)⟩ = 1, and that

the term in the first sum is invariant under the change j ↔ k. For the XX model (U = 0), the quantum
Fisher information can be related to the entanglement entropy via [4]

Sent ≈
5

32
FQ. (6)

This approximate relation holds regardless of how the subsytems are split.

2.3 Methodology

Defining Ĥ ′ = Ĥ
J and U ′ = U

J , the XXZ Hamiltonian in Equation 4 can be rewritten as

Ĥ ′ = −
N−1∑
j=1

(
σ̂x
j ⊗ σ̂x

j+1 + σ̂y
j ⊗ σ̂

y
j+1 − U

′σ̂z
j ⊗ σ̂z

j+1

)
= −

N−1∑
j=1

Σ̂j ,

(7)

where Σ̂ ≡ σ̂x ⊗ σ̂x + σ̂y ⊗ σ̂y − U ′σ̂z ⊗ σ̂z. The corresponding time evolution operator in Equation 3
can then be given as

U(t) ≡ exp

(
− iĤt

ℏ

)
= exp

it′ N−1∑
j=1

Σ̂j

 , (8)

where t′ ≡ Jt
ℏ . Equation 8 can then be used to evolve a state at time t over a short time ∆t via

|Ψ(t+∆t)⟩ = U(∆t) |Ψ(t)⟩ . (9)

Equation 9 can be used to evolve a state from t = 0 to t = T by repeated application of U(∆t) on
|Ψ(0)⟩. While it would be equivalent to instead generate U(t1), . . . , U(tn−1), U(tn) = U(T ) and act each
of these on |Ψ(0)⟩, it would be sufficiently more computationally expensive to calculate n = T

∆t matrix
exponentials.

Functions were written in Python to calculate U(t) (Equation 8), Sent(t) ≡ Sent(ρ̂(t)) (Equation 2),
and FQ(t) (Equation 5). Sent(t) and FQ(t) were calculated for U = 0, J (i.e. U ′ = 0, 1), and the accuracy
of the approximate relation in Equation 6 was tested for both cases. The initial state of the system in
all cases was chosen as |Ψ(0)⟩ = |ΨNéel⟩ = |↑↓↑↓ . . . ↑↓⟩, i.e. an antiferromagnetic state.
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2.4 Results & Discussion

2.4.1 Entanglement Entropy Equivalence

By the equality in Equation 2, calculating the entanglement entropy of a density operator does not
depend on which reduced density operator is used. Figure 2 shows an example of this equivalence.
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Figure 2: Von Neumann entropy of both reduced density operators for each set of subsystems of the
N = 10 XX model.
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2.4.2 Quantum Fisher Information vs. Entanglement Entropy

The time evolution of the state vector |Ψ(t)⟩ was calculated up to t′ = 1.5 for both the XX (U = 0)
and U = J XXZ models, for N = 10 spin sites. The corresponding entanglement entropy Sent(t) and
quantum Fisher information FQ(t) for each possible set of subsystems (N1 = 1, 2, 3, 4, 5) were calculated
and plotted (Figure 3).
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(a) XX model.
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(b) XXZ model.

Figure 3: Entanglement entropy (red) and scaled quantum Fisher information (blue) for each set of
subsystems of the N = 10 XX (left) and U = J XXZ (right) models.

For the XX model, the relation in Equation 6 is a good approximation of the relation between the
entanglement entropy and quantum Fisher information, as can be seen from Figure 3a. It can also
be seen that increasing the difference between subsystem sizes corresponds to entropy and information
having reaching a smaller maximum value in a shorter amount of time.

For the XXZ model, however, the relation in Equation 6 only seems to hold for small times or for the
case of N1 = 1, as can be seen from Figure 3b, and so is generally not a good approximation.

To obtain a better understanding of the accuracy of the relation between entanglement entropy and
quantum Fisher information, the percentage error of Equation 6 was calculated by treating 5

32FQ as an
estimator of Sent, i.e.

% error =

∣∣Sent − 5
32FQ

∣∣
Sent

=

∣∣∣Sent

FQ
− 5

32

∣∣∣
Sent

FQ

. (10)

The ratio of entanglement entropy and quantum Fisher information, and the corresponding percentage
error (Equation 10), were calculated and plotted for the N = 10 XX and XXZ models (Figure 4).
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Figure 4: Ratio of entanglement entropy and quantum Fisher information (left) and corresponding
percentage error (right) for each set of subsystems of the N = 10 XX (light) and U = J XXZ (dark)
models. The dashed line corresponds to the approximate ratio given by Equation 6.

It can be seen from Figure 4 that, for the XX model and for the XXZ model when N1 = 1, the ratio
of the entanglement entropy and quantum Fisher information appears to asymptote to 5

32 as t′ increases.
The corresponding percentage error is also far lower for these cases, again showing when the relation in
Equation 6 holds.

These calculations were repeated for N = 12, and analogous plots to Figure 3 and Figure 4 were made
(Figure 5, Figure 6), again showing the same relationship. The results for N = 10 were further extended
up to t′ = 10 (Figure 7, Figure 8), where it was found that the entanglement entropy and quantum Fisher
information, as well as their ratio and corresponding percentage error, exhibited unsteady behaviour for
longer times.
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Figure 5: Entanglement entropy (red) and scaled quantum Fisher information (blue) for each set of
subsystems of the N = 12 XX (left) and U = J XXZ (right) models.
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Figure 6: Ratio of entanglement entropy and quantum Fisher information (left) and corresponding
percentage error (right) for each set of subsystems of the N = 12 XX (light) and U = J XXZ (dark)
models. The dashed line corresponds to the approximate ratio given by Equation 6.
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Figure 7: Entanglement entropy (red) and scaled quantum Fisher information (blue) for each set of
subsystems of the N = 10 XX (left) and U = J XXZ (right) models.
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Figure 8: Ratio of entanglement entropy and quantum Fisher information (left) and corresponding
percentage error (right) for each set of subsystems of the N = 10 XX (light) and U = J XXZ (dark)
models. The dashed line corresponds to the approximate ratio given by Equation 6.
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2.4.3 Quantum Computer Simulation

The time evolution operator U(t) for a Hamiltonian Ĥ can be written using the first-order Suzuki-Trotter
decomposition via [5, 6]

exp

(
− iĤt

ℏ

)
= lim

n→∞

∏
j

exp

(
− iĤjt

nℏ

)n

, (11)

where Ĥ =
∑

j Ĥj . The Hamiltonian Ĥ ′ used in this report (Equation 7) can be split into two non-

commuting parts; as we have
[
Σ̂j , Σ̂k

]
= 0 for all |j − k| ≠ 1, Equation 7 can then be rewritten as

Ĥ ′ = −
N
2 −1∑
j=1

Σ̂2j −
N
2∑

j=1

Σ̂2j−1 = Ĥ ′
even + Ĥ ′

odd. (12)

Equation 11 and Equation 12 can therefore be combined to obtain an approximation for the time evolution
operator for the XXZ model as

U(t) ≈

[
exp

(
− iĤ

′
event

′

n

)
exp

(
− iĤ

′
oddt

′

n

)]n
. (13)

To realise this approximate time evolution operator as a quantum circuit, it is first necessary to define
the XX, YY and ZZ gates as [7]

exp(−iδ σ̂z ⊗ σ̂z) ≡ ZZ(δ) =

Rz(2δ)

exp(−iδ σ̂y ⊗ σ̂y) ≡ YY(δ) =

Rx

(
π
2

)
Rx

(
−π

2

)
Rx

(
π
2

)
Rz(2δ) Rx

(
−π

2

)

exp(−iδ σ̂x ⊗ σ̂x) ≡ XX(δ) =

Ry

(
−π

2

)
Ry

(
π
2

)
Rz(2δ)

These gates can then be combined to form a Σ gate as

exp
(
−iδ Σ̂

)
= exp[−iδ σ̂x ⊗ σ̂x] exp[−iδ σ̂y ⊗ σ̂y] exp[−i (−U ′δ) σ̂z ⊗ σ̂z]

≡ Σ(δ) = ZZ(−U ′δ) YY(δ) XX(δ)
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Combinations of Σ gates can be used to define Ho and He gates as

exp
(
−iδ Ĥ ′

odd

)
= exp

[
−i (−δ) Σ̂1

]
exp
[
−i (−δ) Σ̂3

]
· · · exp

[
−i (−δ) Σ̂N−1

]

...

≡ Ho(δ) =

Σ(−δ)

Σ(−δ)

Σ(−δ)

exp
(
−iδ Ĥ ′

even

)
= exp

[
−i (−δ) Σ̂2

]
exp
[
−i (−δ) Σ̂4

]
· · · exp

[
−i (−δ) Σ̂N−2

]

...

≡ =He(δ)

Σ(−δ)

Σ(−δ)

Σ(−δ)
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The Ho,e gates can be used to define a H gate as

exp
(
−iδ Ĥ ′

even

)
exp
(
−iδ Ĥ ′

odd

)
≡ H(δ) = Ho(δ) He(δ)

The H gate can then be used to approximate the time evolution of |Ψ(0)⟩ = |ΨNéel⟩ via Equation 13 as

|Ψ(t)⟩ = exp
(
−iĤ ′t′

)
|ΨNéel⟩ ≈

[
exp
(
−i t

′

n Ĥ
′
even

)
exp
(
−i t

′

n Ĥ
′
odd

)]n
|ΨNéel⟩

|0⟩ . . .

|1⟩ . . .

...
...

|0⟩ . . .

|1⟩ . . .

= H
(

t′

n

)
H
(

t′

n

)
H
(

t′

n

)

Quantum state tomography [8] can be employed to obtain the density matrix of a given state via
repeated measurements, where the entanglement entropy can then be calculated as before. As each term
in the quantum Fisher information (Equation 5) is an expected value of an operator, it can be calculated
via ensemble averages over repeated measurements of the system. This first-order “Trotterisation” has

error of the order O
(

(t′)2

n

)
, [7] and is thus most accurate for shorter times t′ and larger number of time

slices n.

2.5 Conclusion

The relation between entanglement entropy and quantum Fisher information in Equation 6 was found
to only hold for the XX model, or in the outlier case of the XXZ model when one subsystem has a single
spin site. It was also shown that, as expected, calculating the entanglement entropy does not depend on
which reduced density operator is used.

The method used in this report to calculate the time evolution operator involved directly calculating
and exponentiating the Hamiltonian matrix. As the size of this matrix is 2N × 2N , where each compo-
nent is a 128 bit complex number, this method very quickly takes extraordinary amounts of time and
computational power to run; indeed, attempting to repeat the calculations in this report for N = 14
required over 21GB of memory. Rewriting the programme to instead use sparse matrix exponentiation
still required over 4GB of memory.
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