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1 Exercises from the notes

(a)

5.1.1

H({pj}) ≡ −
N∑
j=1

p(xj) log2[p(xj)]

= −1

2
log2

(
1

2

)
− 1

4
log2

(
1

4

)
− 1

8
log2

(
1

8

)
− 1

8
log2

(
1

8

)
= −1

2
log2

(
2−1
)
− 1

4
log2

(
2−2
)
− 2

8
log2

(
2−3
)

=
1

2
log2(2) +

2

4
log2(2) +

3

4
log2(2)

=
7

4
log2(2)

H({pj}) =
7

4

5.1.2

H(X|Y ) = −
N∑
j=1

M∑
k=1

p(xj , yk) log2[p(xj |yk)]

= −
N∑
j=1

M∑
k=1

p(xj , yk) log2

[
p(xj , yk)

p(yk)

]
(as p(xj , yk) = p(xj |yk) p(yk))

= −
N∑
j=1

M∑
k=1

p(xj , yk) {log2[p(xj , yk)]− log2[p(yk)]}

= −
N∑
j=1

M∑
k=1

p(xj , yk) log2[p(xj , yk)] +

N∑
j=1

M∑
k=1

p(xj , yk) log2[p(yk)]

= H(X,Y ) +

M∑
k=1

 N∑
j=1

p(xj , yk)

 log2[p(yk)]

= H(X,Y )−

(
−

M∑
k=1

p(yk) log2[p(yk)]

)
H(X|Y ) = H(X,Y )−H(Y ) (1)
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5.1.3

H(X,Y ) = −
N∑
j=1

M∑
k=1

p(xj , yk) log2[p(xj , yk)]

= −
N∑
j=1

M∑
k=1

δjkp(yk) log2[δjkp(yk)]

= −
M∑
k=1

p(yk) log2[p(yk)]

H(X,Y ) = H(Y ) (2)

H(X,Y ) = −
N∑
j=1

M∑
k=1

p(xj , yk) log2[p(xj , yk)]

= −
N∑
j=1

M∑
k=1

p(xj , yk) log2[p(yk|xj) p(xj)] (as p(xj , yk) = p(yk|xj) p(xj))

= −
N∑
j=1

M∑
k=1

p(xj , yk) {log2[p(yk|xj)] + log2[p(xj)]}

= −
N∑
j=1

M∑
k=1

p(xj , yk) log2[p(yk|xj)]−
N∑
j=1

M∑
k=1

p(xj , yk) log2[p(xj)]

= H(X|Y )−
N∑
j=1

(
M∑
k=1

p(xj , yk)

)
log2[p(xj)]

= H(X|Y )−
N∑
j=1

p(xj) log2[p(xj)]

We have shown that H(X|Y ) = H(X,Y ) −H(Y ) (Equation 1). We have also shown that H(X,Y ) =
H(Y ) for perfectly correlated sources (Equation 2). Therefore for perfectly correlated sources, H(X|Y ) =
H(Y )−H(Y ) = 0, and so we have

H(X,Y ) = 0−
N∑
j=1

p(xj) log2[p(xj)]

= H(X)

Therefore H(X,Y ) = H(X) = H(Y ).

5.1.4

H(X : Y ) = H(X) +H(Y )−H(X,Y )

= H(X) +H(Y )−H(X|Y )−H(Y ) (as H(X|Y ) = H(X,Y )−H(Y ))

= H(X)−H(X|Y )

Thus we can see that H(X : Y ) is maximised when H(X|Y ) is minimised, and minimised when H(X|Y )
is maximised.

H(X|Y ) obtains its minimum when there is no uncertainty in the value ofX once Y is known, i.e. when
X and Y are perfectly correlated. In this case H(X|Y ) = 0, and so H(X : Y ) ⩽ H(X)− 0 = H(X).

H(X|Y ) obtains its maximum when there is no difference in the uncertainty of X when Y is known,
i.e. whenX and Y are independent. In this caseH(X|Y ) = H(X), and soH(X : Y ) ⩾ H(X)−H(X) = 0.

Therefore 0 ⩽ H(X : Y ) ⩽ H(X), and H(X : Y ) is bounded below/above when X and Y are
independent/perfectly correlated.
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5.3.3

A E p(E|A) B p(E|A) p(B|EA)

0 X̂

0 X̂ 1
2

0 X̂ 1
4

0 Ẑ 1
8

1 Ẑ 1
8

0 Ẑ 1
4

0 X̂ 1
16

0 Ẑ 1
8

1 X̂ 1
16

1 Ẑ 1
4

0 X̂ 1
16

1 X̂ 1
16

1 Ẑ 1
8

0 Ẑ

0 X̂ 1
4

0 X̂ 1
8

0 Ẑ 1
16

1 Ẑ 1
16

0 Ẑ 1
2

0 X̂ 1
8

0 Ẑ 1
4

1 X̂ 1
8

1 X̂ 1
4

0 Ẑ 1
16

1 X̂ 1
8

1 Ẑ 1
16

A E p(E|A) B p(E|A) p(B|EA)

1 X̂

0 Ẑ 1
4

0 X̂ 1
16

0 Ẑ 1
8

1 X̂ 1
16

1 X̂ 1
2

0 Ẑ 1
8

1 X̂ 1
4

1 Ẑ 1
8

1 Ẑ 1
4

0 X̂ 1
16

1 X̂ 1
16

1 Ẑ 1
8

1 Ẑ

0 X̂ 1
4

0 X̂ 1
8

0 Ẑ 1
16

1 Ẑ 1
16

1 X̂ 1
4

0 Ẑ 1
16

1 X̂ 1
8

1 Ẑ 1
16

1 Ẑ 1
2

0 X̂ 1
8

1 X̂ 1
8

1 Ẑ 1
4

p(0 = Ri, 0 = R′
i) = p(0 = R′

i|0 = Ri) p(0 = Ri)

=

(
1

4
+

1

16
+

1

16
+

1

16
+

1

4
+

1

16

)
1

2

=
3

8
p(0 = Ri, 1 = R′

i) = p(1 = R′
i|0 = Ri) p(0 = Ri)

=

(
1

16
+

1

16
+

1

16
+

1

16

)
1

2

=
1

8
p(1 = Ri, 0 = R′

i) = p(0 = R′
i|1 = Ri) p(1 = Ri)

=

(
1

16
+

1

16
+

1

16
+

1

16

)
1

2

=
1

8
p(1 = Ri, 1 = R′

i) = p(1 = R′
i|1 = Ri) p(1 = Ri)

=

(
1

16
+

1

4
+

1

16
+

1

16
+

1

16
+

1

4

)
1

2

=
3

8

H(X) = H(Y ) = −1

2
log2

(
1

2

)
− 1

2
log2

(
1

2

)
= 1

H(X,Y ) = −3

8
log2

(
3

8

)
− 1

8
log2

(
1

8

)
− 1

8
log2

(
1

8

)
− 3

8
log2

(
3

8

)
= 1.811

H(X : Y ) = H(X) +H(Y )−H(X,Y )

= 0.189
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(b)

6.1.2

ĤŶĤ =
1√
2

(
X̂ + Ẑ

)
Ŷ

1√
2

(
X̂ + Ẑ

)
=

1

2

(
X̂ŶX̂ + X̂ŶẐ + ẐŶX̂ + ẐŶX̂

)
=

1

2

(
iẐX̂ + iẐẐ− iX̂X̂− iX̂Ẑ

)
(as σ̂iσ̂j = δij1 + i

∑3
k=1 εijkσ̂k)

=
1

2

(
−Ŷ + i1 − i1 − Ŷ

)
(as σ̂iσ̂j = δij1 + i

∑3
k=1 εijkσ̂k)

ĤŶĤ = −Ŷ

ĤẐĤ =
1√
2

(
X̂ + Ẑ

)
Ẑ

1√
2

(
X̂ + Ẑ

)
=

1

2

(
X̂ẐX̂ + X̂ẐẐ + ẐẐX̂ + ẐẐẐ

)
=

1

2

(
iX̂Ŷ + X̂ + X̂ + Ẑ

)
(as σ̂iσ̂j = δij1 + i

∑3
k=1 εijkσ̂k)

=
1

2

(
−Ẑ + 2X̂ + Ẑ

)
(as σ̂iσ̂j = δij1 + i

∑3
k=1 εijkσ̂k)

= X̂

ĤẐĤ = X̂ =⇒ ĤĤẐĤĤ = ĤX̂Ĥ

=⇒ Ẑ = ĤX̂Ĥ (as ĤĤ = 1)

As we have that

X̂ |0⟩ = |1⟩ Ẑ |+⟩ = |−⟩
X̂ |1⟩ = |0⟩ Ẑ |−⟩ = |+⟩ ,

the Pauli gates X̂ and Ẑ can be considered as a bit-flip on the basis states of Ẑ and X̂, respectively.
Therefore both ĤẐĤ = X̂ and ĤX̂Ĥ = Ẑ state that a bit-flip on the basis states of one of the Pauli gates
X̂, Ẑ can be related to a bit-flip on the basis states of the other gate via left and right multiplication of
Hadamard gates Ĥ.

6.2.1

1 ⊗ Ĥ =

(
Ĥ 0
0 Ĥ

)
Ĥ⊗ 1 =

1√
2

(
1 1
1 −1

)

=
1√
2


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

 =
1√
2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1
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6.2.3 (
Ĥ⊗ Ĥ

)
ĈX

(
Ĥ⊗ Ĥ

)
(|x⟩ ⊗ |y⟩) =

(
Ĥ⊗ Ĥ

)
ĈX

(
Ĥ |x⟩ ⊗ Ĥ |y⟩

)
=
(
Ĥ⊗ Ĥ

)
ĈX

1√
2
(|0⟩+ (−1)x |1⟩)⊗ 1√

2
(|0⟩+ (−1)y |1⟩)

(as Ĥ |x⟩ = 1√
2
(|0⟩+ (−1)x |1⟩))

=
1

2

(
Ĥ⊗ Ĥ

)
ĈX

(
|0⟩ ⊗ |0⟩+ (−1)y |0⟩ ⊗ |1⟩

+ (−1)x |1⟩ ⊗ |0⟩+ (−1)x+y |1⟩ ⊗ |1⟩
)

=
1

2

(
Ĥ⊗ Ĥ

) (
|0⟩ ⊗ |0⟩+ (−1)y |0⟩ ⊗ |1⟩

+ (−1)x |1⟩ ⊗ |1⟩+ (−1)x+y |1⟩ ⊗ |0⟩
)

(as ĈX |x⟩ ⊗ |y⟩ = |x⟩ ⊗ |x⊕ y⟩)

=
1

2

(
Ĥ |0⟩ ⊗ Ĥ |0⟩+ (−1)yĤ |0⟩ ⊗ Ĥ |1⟩

+ (−1)x+yĤ |1⟩ ⊗ Ĥ |0⟩+ (−1)xĤ |1⟩ ⊗ Ĥ |1⟩
)

=
1

2

[
1√
2
(|0⟩+ |1⟩)⊗ 1√

2
(|0⟩+ |1⟩)

+ (−1)y
1√
2
(|0⟩+ |1⟩)⊗ 1√

2
(|0⟩ − |1⟩)

+ (−1)x+y 1√
2
(|0⟩ − |1⟩)⊗ 1√

2
(|0⟩+ |1⟩)

+ (−1)x
1√
2
(|0⟩ − |1⟩)⊗ 1√

2
(|0⟩ − |1⟩)

]
(as Ĥ |x⟩ = 1√

2
(|0⟩+ (−1)x |1⟩))

=
1

4

[(
1 + (−1)x + (−1)y + (−1)x+y

)
|0⟩ ⊗ |0⟩

+
(
1− (−1)x − (−1)y + (−1)x+y

)
|0⟩ ⊗ |1⟩

+
(
1− (−1)x + (−1)y − (−1)x+y

)
|1⟩ ⊗ |0⟩

+
(
1 + (−1)x − (−1)y − (−1)x+y

)
|1⟩ ⊗ |1⟩

](
Ĥ⊗ Ĥ

)
ĈX

(
Ĥ⊗ Ĥ

)
(|0⟩ ⊗ |0⟩) = |0⟩ ⊗ |0⟩(

Ĥ⊗ Ĥ
)
ĈX

(
Ĥ⊗ Ĥ

)
(|0⟩ ⊗ |1⟩) = |1⟩ ⊗ |1⟩(

Ĥ⊗ Ĥ
)
ĈX

(
Ĥ⊗ Ĥ

)
(|1⟩ ⊗ |0⟩) = |1⟩ ⊗ |0⟩(

Ĥ⊗ Ĥ
)
ĈX

(
Ĥ⊗ Ĥ

)
(|1⟩ ⊗ |1⟩) = |0⟩ ⊗ |1⟩

=⇒
(
Ĥ⊗ Ĥ

)
ĈX

(
Ĥ⊗ Ĥ

)
(|x⟩ ⊗ |y⟩) = δx0 δ

y
0 |0⟩ ⊗ |0⟩+ δx1 δ

y
1 |0⟩ ⊗ |1⟩+ δx1 δ

y
0 |1⟩ ⊗ |0⟩+ δx0 δ

y
1 |1⟩ ⊗ |1⟩

(
1 ⊗ |0⟩ ⟨0|+ X̂⊗ |1⟩ ⟨1|

)
(|x⟩ ⊗ |y⟩) = |x⟩ ⊗ |0⟩ ⟨0 | y⟩+ X̂ |x⟩ ⊗ |1⟩ ⟨1 | y⟩

= ⟨0 | y⟩ |x⟩ ⊗ |0⟩+ ⟨1 | y⟩ |x+ 1⟩ ⊗ |1⟩
= δy0 (δ

x
0 |0⟩ ⊗ |0⟩+ δx1 |1⟩ ⊗ |0⟩) + δy1 (δ

x
0 |1⟩ ⊗ |1⟩+ δx1 |0⟩ ⊗ |1⟩)

= δx0 δ
y
0 |0⟩ ⊗ |0⟩+ δx1 δ

y
1 |0⟩ ⊗ |1⟩+ δx1 δ

y
0 |1⟩ ⊗ |0⟩+ δx0 δ

y
1 |1⟩ ⊗ |1⟩

=
(
Ĥ⊗ Ĥ

)
ĈX

(
Ĥ⊗ Ĥ

)
(|x⟩ ⊗ |y⟩)

=⇒
(
Ĥ⊗ Ĥ

)
ĈX

(
Ĥ⊗ Ĥ

)
=
(

1 ⊗ |0⟩ ⟨0|+ X̂⊗ |1⟩ ⟨1|
)

Thus the circuit relation in Figure 6.5(b) holds.
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6.2.4(
Ĥ⊗ Ĥ

)
ĈX

(
Ĥ⊗ Ĥ

)
=
(
Ĥ⊗ Ĥ

)(
|0⟩ ⟨0| ⊗ 1 + |1⟩ ⟨1| ⊗ X̂

)(
Ĥ⊗ Ĥ

)
= Ĥ |0⟩ ⟨0| Ĥ⊗ Ĥ1Ĥ + Ĥ |1⟩ ⟨1| Ĥ⊗ ĤX̂Ĥ

=
1√
2
(|0⟩+ |1⟩) 1√

2
(⟨0|+ ⟨1|)⊗ 1 +

1√
2
(⟨0| − ⟨1|) 1√

2
(⟨0| − ⟨1|)⊗ Ẑ

(as ĤĤ = 1, ĤX̂Ĥ = Ẑ, Ĥ |0⟩ = 1√
2
(|0⟩+ |1⟩), Ĥ |1⟩ = 1√

2
(|0⟩ − |1⟩))

=
1

2
(|0⟩ ⟨0|+ |0⟩ ⟨1|+ |1⟩ ⟨0|+ |1⟩ ⟨1|)⊗ (|0⟩ ⟨0|+ |1⟩ ⟨1|)

+
1

2
(|0⟩ ⟨0| − |0⟩ ⟨1| − |1⟩ ⟨0|+ |1⟩ ⟨1|)⊗ (|0⟩ ⟨0| − |1⟩ ⟨1|)

=
1

2
(|0⟩ ⟨0|+ |0⟩ ⟨1|+ |1⟩ ⟨0|+ |1⟩ ⟨1|+ |0⟩ ⟨0| − |0⟩ ⟨1| − |1⟩ ⟨0|+ |1⟩ ⟨1|)⊗ |0⟩ ⟨0|

+
1

2
(|0⟩ ⟨0|+ |0⟩ ⟨1|+ |1⟩ ⟨0|+ |1⟩ ⟨1| − |0⟩ ⟨0|+ |0⟩ ⟨1|+ |1⟩ ⟨0| − |1⟩ ⟨1|)⊗ |1⟩ ⟨1|

= (|0⟩ ⟨0|+ |1⟩ ⟨1|)⊗ |0⟩ ⟨0|+ (|0⟩ ⟨1|+ |1⟩ ⟨0|)⊗ |1⟩ ⟨1|
= 1 ⊗ |0⟩ ⟨0|+ X̂⊗ |1⟩ ⟨1|

Thus the circuit relation in Figure 6.5(b) holds.

Îϕ = Ĉeiϕ1

= |0⟩ ⟨0| ⊗ 1 + |1⟩ ⟨1| ⊗ eiϕ1 (as ĈU ≡ |0⟩ ⟨0| ⊗ 1 + |1⟩ ⟨1| ⊗ U)

=
(
|0⟩ ⟨0|+ eiϕ |1⟩ ⟨1|

)
⊗ 1

= P̂ϕ ⊗ 1

Thus the circuit relation in Figure 6.5(d) holds.

(c)

7.1.7

The inner product for Â and B̂ in the space generated by the Pauli basis
{

1, X̂, Ŷ, Ẑ
}

is defined as

S
(
Â, B̂

)
= tr

(
Â

†
B̂
)
.

First consider Â = 1, B̂ ∈
{
X̂, Ŷ, Ẑ

}
. Then

S
(

1, B̂
)
= tr

(
1†B̂

)
= tr

(
B̂
)

= 0. (as the Pauli matrices are traceless)

As S
(
B̂, Â

)
= S

(
Â, B̂

)∗
then we also have S

(
B̂,1

)
= 0, and so 1 is orthogonal to the Pauli matrices.

Now consider Â, B̂ ∈
{
X̂, Ŷ, Ẑ

}
, Â ̸= B̂, and denote Ĉ ∈

{
X̂, Ŷ, Ẑ

}
where Â ̸= Ĉ ̸= B̂. Then

S
(
Â, B̂

)
= tr

(
Â

†
B̂
)

= tr
(
ÂB̂
)

(as the Pauli matrices are Hermitian)

= tr
(
±iĈ

)
(as σ̂iσ̂j = δij1 + i

∑3
k=1 εijkσ̂k)

= ±i tr
(
Ĉ
)

= 0. (as the Pauli matrices are traceless)
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Thus the Pauli matrices are orthogonal to each other.
Therefore each element of the Pauli basis is orthogonal to the others, and so the basis is orthogonal.

7.1.8

ρ̂2 =
1

2

(
1 + nxX̂ + nyŶ + nzẐ

) 1

2

(
1 + nxX̂ + nyŶ + nzẐ

)
=

1

4

(
1 + nxX̂ + nyŶ + nzẐ + nxX̂ + n2xX̂

2
+ nxnyX̂Ŷ + nxnzX̂Ẑ

+ nyŶ + nynxŶX̂ + n2yŶ
2
+ nynzŶẐ + nzẐ + nznxẐX̂ + nznyẐŶ + n2zẐ

2
)

=
1

4

[(
1 + n2x + n2y + n2z

)
1 + nxX̂ + nyŶ + nzẐ + nxny

{
X̂, Ŷ

}
+ nynz

{
Ŷ, Ẑ

}
+ nznx

{
Ẑ, X̂

}]
(as σ̂2

i = 1)

=
1

4

[(
1 + ||n||2

)
1 + nxX̂ + nyŶ + nzẐ

]
(as {σ̂i, σ̂j} = 2δi,j1)

tr
(
ρ̂2
)
=

1

4
tr
[(
1 + ||n||2

)
1 + nxX̂ + nyŶ + nzẐ

]
=

1

4

[(
1 + ||n||2

)
tr(1) + nx tr

(
X̂
)
+ ny tr

(
Ŷ
)
+ nz tr

(
Ẑ
)]

=
1 + ||n||2

2
(as tr(1) = 2, tr(σ̂i) = 0)

For ρ̂ to be a density operator, we require that 0 ⩽ ||n|| ⩽ 1. If ||n|| = 0 then we have that ρ̂ =
1
21 corresponds to a maximally mixed state, and tr

(
ρ̂2
)
= 1

2 . If ||n|| = 1 then we have that ρ̂ =
1
2

(
1 + X̂ + Ŷ + Ẑ

)
corresponds to a pure state, and tr

(
ρ̂2
)
= 1. Therefore we have that tr

(
ρ̂2
)
= 1 for

pure states, and 1
2 ⩽ tr

(
ρ̂2
)
< 1 for mixed states.

(d)

8.2.1

Bqm(θ) = −a · b− a′ · b′ − a′ · b+ a · b′

= − cosπ − cos 2θ − cos(π − θ) + cos θ (from Figure 8.5(a))

= 1− cos 2θ − cosπ cos θ − sinπ sin θ + cos θ

= 1− cos 2θ + cos θ − 0 + cos θ

= 1 + 2 cos θ − cos 2θ

0 =
dBqm(θ)

dθ
= −2 sin θ + 2 sin 2θ

=⇒ sin θ = sin 2θ

=⇒ sin θ = 2 sin θ cos θ

sin 0 = 2 sin 0 cos 0 = 0 1 = 2 cos θ for θ ̸= 0

=⇒ min./max. at θ = 0 =⇒ min./max. at cos θ =
1

2

Bqm(0) = 1 + 2− 1

= 2 ≯ 2 =⇒ not violated for θ = 0

Bqm

(
arccos

1

2

)
= 1 + 1 +

1

2

=
5

2
> 2 =⇒ maximum violation of

5

2
at cos θ =

1

2
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8.3.1

E(a′′,b′′) =
1√
2
(⟨0| ⊗ ⟨1| − ⟨1| ⊗ ⟨0|)

(
− X̂ + Ẑ√

2
⊗ Ẑ

)
1√
2
(|0⟩ ⊗ |1⟩ − |1⟩ ⊗ |0⟩)

= − 1

2
√
2
(⟨0| ⊗ ⟨1| − ⟨1| ⊗ ⟨0|)

(
X̂ |0⟩ ⊗ Ẑ |1⟩ − X̂ |1⟩ ⊗ Ẑ |0⟩+ Ẑ |0⟩ ⊗ Ẑ |1⟩ − Ẑ |1⟩ ⊗ Ẑ |0⟩

)
= − 1

2
√
2
(⟨0| ⊗ ⟨1| − ⟨1| ⊗ ⟨0|) (− |1⟩ ⊗ |1⟩ − |0⟩ ⊗ |0⟩ − |0⟩ ⊗ |1⟩+ |1⟩ ⊗ |0⟩)

= − 1

2
√
2
(−0− 0− 1− 1)

=
1√
2

E(a′,b′) =
1√
2
(⟨0| ⊗ ⟨1| − ⟨1| ⊗ ⟨0|)

(
X̂⊗ Ẑ− X̂√

2

)
1√
2
(|0⟩ ⊗ |1⟩ − |1⟩ ⊗ |0⟩)

=
1

2
√
2
(⟨0| ⊗ ⟨1| − ⟨1| ⊗ ⟨0|)

(
X̂ |0⟩ ⊗ Ẑ |1⟩ − X̂ |1⟩ ⊗ Ẑ |0⟩ − X̂ |0⟩ ⊗ X̂ |1⟩+ X̂ |1⟩ ⊗ X̂ |0⟩

)
=

1

2
√
2
(⟨0| ⊗ ⟨1| − ⟨1| ⊗ ⟨0|) (− |1⟩ ⊗ |1⟩ − |0⟩ ⊗ |0⟩ − |1⟩ ⊗ |0⟩+ |0⟩ ⊗ |1⟩)

=
2
√
2
(−0− 0 + 1 + 1)

=
1√
2

E(a′,b′′) =
1√
2
(⟨0| ⊗ ⟨1| − ⟨1| ⊗ ⟨0|)

(
X̂⊗ Ẑ

) 1√
2
(|0⟩ ⊗ |1⟩ − |1⟩ ⊗ |0⟩)

=
1

2
(⟨0| ⊗ ⟨1| − ⟨1| ⊗ ⟨0|)

(
X̂ |0⟩ ⊗ Ẑ |1⟩ − X̂ |1⟩ ⊗ Ẑ |0⟩

)
=

1

2
(⟨0| ⊗ ⟨1| − ⟨1| ⊗ ⟨0|) (− |1⟩ ⊗ |1⟩ − |0⟩ ⊗ |0⟩)

=
1

2
(−0− 0)

= 0

E(a′′,b′) =
1√
2
(⟨0| ⊗ ⟨1| − ⟨1| ⊗ ⟨0|)

(
− X̂ + Ẑ√

2
⊗ X̂− Ẑ√

2

)
1√
2
(|0⟩ ⊗ |1⟩ − |1⟩ ⊗ |0⟩)

= − 1

4
(⟨0| ⊗ ⟨1| − ⟨1| ⊗ ⟨0|)

(
X̂ |0⟩ ⊗ X̂ |1⟩ − X̂ |1⟩ ⊗ X̂ |0⟩ − X̂ |0⟩ ⊗ Ẑ |1⟩+ X̂ |1⟩ ⊗ Ẑ |0⟩

+ Ẑ |0⟩ ⊗ X̂ |1⟩ − Ẑ |1⟩ ⊗ X̂ |0⟩ − Ẑ |0⟩ ⊗ Ẑ |1⟩+ Ẑ |1⟩ ⊗ Ẑ |0⟩
)

= − 1

4
(⟨0| ⊗ ⟨1| − ⟨1| ⊗ ⟨0|) (|1⟩ ⊗ |0⟩ − |0⟩ ⊗ |1⟩+ |1⟩ ⊗ |1⟩+ |0⟩ ⊗ |0⟩

+ |0⟩ ⊗ |0⟩+ |1⟩ ⊗ |1⟩+ |0⟩ ⊗ |1⟩ − |1⟩ ⊗ |0⟩)

= − 1

4
(⟨0| ⊗ ⟨1| − ⟨1| ⊗ ⟨0|) (2 |0⟩ ⊗ |0⟩+ 2 |1⟩ ⊗ |1⟩)

= − 1

2
(0 + 0)

= 0

Bqm = E(a′′,b′′) + E(a′,b′) + E(a′,b′′)− E(a′′,b′)

=
1√
2
+

1√
2
+ 0− 0

=
√
2
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2 Approximate Quantum Cloning

(a)

|0⟩ ⊗ |0⟩
Apply Ry(−2θ1)⊗ 1 → (cos θ1 |0⟩ − sin θ1 |1⟩)⊗ |0⟩
Apply |0⟩ ⟨0| ⊗ 1 + |1⟩ ⟨1| ⊗ X̂ → cos θ1 |0⟩ ⊗ |0⟩ − sin θ1 |1⟩ ⊗ |1⟩
Apply 1 ⊗Ry(−2θ2) → cos θ1 |0⟩ ⊗ (cos θ2 |0⟩ − sin θ2 |1⟩)

− sin θ1 |1⟩ ⊗ (sin θ2 |0⟩+ cos θ2 |1⟩)
Apply 1 ⊗ |0⟩ ⟨0|+ X̂⊗ |1⟩ ⟨1| → cos θ1 cos θ2 |0⟩ ⊗ |0⟩ − sin θ1 sin θ2 |1⟩ ⊗ |0⟩

− cos θ1 sin θ2 |1⟩ ⊗ |1⟩ − sin θ1 cos θ2 |0⟩ ⊗ |1⟩
= cos θ2 |0⟩ ⊗ (cos θ1 |0⟩ − sin θ1 |1⟩)

− sin θ2 |1⟩ ⊗ (sin θ1 |0⟩+ cos θ1 |1⟩)
Apply Ry(−2θ3)⊗ 1 → cos θ2 (cos θ3 |0⟩ − sin θ3 |1⟩)⊗ (cos θ1 |0⟩ − sin θ1 |1⟩)

− sin θ2 (sin θ3 |0⟩+ cos θ3 |1⟩)⊗ (sin θ1 |0⟩+ cos θ1 |1⟩)
= (cos θ1 cos θ2 cos θ3 − sin θ1 sin θ2 sin θ3) |0⟩ ⊗ |0⟩

− (sin θ1 cos θ2 cos θ3 + cos θ1 sin θ2 sin θ3) |0⟩ ⊗ |1⟩
− (cos θ1 cos θ2 sin θ3 + sin θ1 sin θ2 cos θ3) |1⟩ ⊗ |0⟩
+ (sin θ1 cos θ2 sin θ3 − cos θ1 sin θ2 cos θ3) |1⟩ ⊗ |1⟩

=

√
2

3
|0⟩ ⊗ |0⟩+ 1√

6
|0⟩ ⊗ |1⟩+ 0 |1⟩ ⊗ |0⟩+ 1√

6
|1⟩ ⊗ |1⟩

=
1√
6
(2 |00⟩+ |01⟩+ |11⟩)
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(b)

|Ψ⟩ ⊗ |Φ⟩

=
1√
6
[(α |0⟩+ β |1⟩)⊗ (2 |0⟩ ⊗ |0⟩+ |0⟩ ⊗ |1⟩+ |1⟩ ⊗ |1⟩)]

Apply
(
|0⟩ ⟨0| ⊗ 1 + |1⟩ ⟨1| ⊗ X̂

)
⊗ 1 → α√

6
|0⟩ ⊗ (2 |0⟩ ⊗ |0⟩+ |0⟩ ⊗ |1⟩+ |1⟩ ⊗ |1⟩)

+
β√
6
|1⟩ ⊗ (2 |1⟩ ⊗ |0⟩+ |1⟩ ⊗ |1⟩+ |0⟩ ⊗ |1⟩)

Apply |0⟩ ⟨0| ⊗ 1 ⊗ 1 + |1⟩ ⟨1| ⊗ 1 ⊗ X̂ → α√
6
|0⟩ ⊗ (2 |0⟩ ⊗ |0⟩+ |0⟩ ⊗ |1⟩+ |1⟩ ⊗ |1⟩)

+
β√
6
|1⟩ ⊗ (2 |1⟩ ⊗ |1⟩+ |1⟩ ⊗ |0⟩+ |0⟩ ⊗ |0⟩)

Apply
(

1 ⊗ |0⟩ ⟨0|+ X̂⊗ |1⟩ ⟨1|
)
⊗ 1 → α√

6
|0⟩ ⊗ (2 |0⟩ ⊗ |0⟩+ |0⟩ ⊗ |1⟩) + β√

6
|1⟩ ⊗ |0⟩ ⊗ |0⟩

+
α√
6
|1⟩ ⊗ |1⟩ ⊗ |1⟩+ β√

6
|0⟩ ⊗ (2 |1⟩ ⊗ |1⟩+ |1⟩ ⊗ |0⟩)

=
1√
6
|0⟩ ⊗ [α (2 |0⟩ ⊗ |0⟩+ |0⟩ ⊗ |1⟩) + β (2 |1⟩ ⊗ |1⟩+ |1⟩ ⊗ |0⟩)]

+
1√
6
|1⟩ ⊗ (α |1⟩ ⊗ |1⟩+ β |0⟩ ⊗ |0⟩)

Apply 1 ⊗ 1 ⊗ |0⟩ ⟨0|+ X̂⊗ 1 ⊗ |1⟩ ⟨1| → 1√
6
[|0⟩ ⊗ (2α |0⟩ ⊗ |0⟩+ β |1⟩ ⊗ |0⟩) + β |1⟩ ⊗ |0⟩ ⊗ |0⟩]

+
1√
6
[|1⟩ ⊗ (α |0⟩ ⊗ |1⟩+ 2β |1⟩ ⊗ |1⟩) + α |0⟩ ⊗ |1⟩ ⊗ |1⟩]

=
1√
6
(2α |0⟩ ⊗ |0⟩+ β |0⟩ ⊗ |1⟩+ β |1⟩ ⊗ |0⟩)⊗ |0⟩

+
1√
6
(α |1⟩ ⊗ |0⟩+ 2β |1⟩ ⊗ |1⟩+ α |0⟩ ⊗ |1⟩)⊗ |1⟩

=

[
α

√
2

3
|00⟩+ β√

6
(|10⟩+ |01⟩)

]
|0⟩

+

[
β

√
2

3
|11⟩+ α√

6
(|10⟩+ |01⟩)

]
|1⟩

(c)

ρ̂ = |ΨΦ⟩ ⟨ΨΦ|

=

{[
α

√
2

3
|00⟩+ β√

6
(|10⟩+ |01⟩)

]
|0⟩+

[
β

√
2

3
|11⟩+ α√

6
(|10⟩+ |01⟩)

]
|1⟩

}
×

×

{
⟨0|

[
α

√
2

3
⟨00|+ β√

6
(⟨10|+ ⟨01|)

]
+ ⟨1|

[
β

√
2

3
⟨11|+ α√

6
(⟨10|+ ⟨01|)

]}

ρ̂12 = tr3(ρ̂)

=

(
α

√
2

3
|00⟩+ β√

6
|10⟩+ β√

6
|01⟩

)(
α

√
2

3
⟨00|+ β√

6
⟨10|+ β√

6
⟨01|

)
+ 0

+ 0 +

(
β

√
2

3
|11⟩+ α√

6
|10⟩+ α√

6
|01⟩

)(
β

√
2

3
⟨11|+ α√

6
⟨10|+ α√

6
⟨01|

)
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ρ̂1 = tr2(ρ̂12)

=

(
α

√
2

3
|0⟩+ β√

6
|1⟩

)(
α

√
2

3
⟨0|+ β√

6
⟨1|

)
+

β√
6
|0⟩ β√

6
⟨0|+ 0

+
α√
6
|1⟩ α√

6
⟨1|+

(
β

√
2

3
|1⟩+ α√

6
|0⟩

)(
β

√
2

3
⟨1|+ α√

6
⟨0|

)
+ 0 (3)

=

(
2α2

3
+
β2

6
+
α2

6

)
|0⟩ ⟨0|+

(
αβ

3
+
αβ

3

)
|0⟩ ⟨1|

+

(
αβ

3
+
αβ

3

)
|1⟩ ⟨0|+

(
β2

6
+
α2

6
+

2β2

3

)
|1⟩ ⟨1|

=
2

3
(α |0⟩+ β |1⟩) (α ⟨0|+ β ⟨1|) + α2 + β2

6
(|0⟩ ⟨0|+ |1⟩ ⟨1|)

=
2

3
|Ψ⟩ ⟨Ψ|+ 1

6
1 (as α2 + β2 = 1)

ρ̂2 = tr1(ρ̂12)

=

(
α

√
2

3
|0⟩+ β√

6
|1⟩

)(
α

√
2

3
⟨0|+ β√

6
⟨1|

)
+

β√
6
|0⟩ β√

6
⟨0|+ 0

+
α√
6
|1⟩ α√

6
⟨1|+

(
β

√
2

3
|1⟩+ α√

6
|0⟩

)(
β

√
2

3
⟨1|+ α√

6
⟨0|

)
+ 0

= ρ̂1 (from Equation 3)

=⇒ ρ̂1 = ρ̂2 =
2

3
|Ψ⟩ ⟨Ψ|+ 1

6
1 ≡ ρ̂1(2)

(d)

fqc = ⟨Ψ| ρ̂1(2) |Ψ⟩

= ⟨Ψ|
(
2

3
|Ψ⟩ ⟨Ψ|+ 1

6
1

)
|Ψ⟩

=
2

3
⟨Ψ |Ψ⟩ ⟨Ψ |Ψ⟩+ 1

6
⟨Ψ |Ψ⟩

fqc =
5

6

3 Teleportation and the state swapping circuit

(a)

|Ψ⟩ ⊗ |0⟩
Apply 1 ⊗ |0⟩ ⟨0|+ X̂⊗ |1⟩ ⟨1| → |Ψ⟩ ⊗ |0⟩+ 0

Apply |0⟩ ⟨0| ⊗ 1 + |1⟩ ⟨1| ⊗ X̂ → ⟨0 |Ψ⟩ |0⟩ ⊗ |0⟩+ ⟨1 |Ψ⟩ |1⟩ ⊗ |1⟩
Apply 1 ⊗ |0⟩ ⟨0|+ X̂⊗ |1⟩ ⟨1| → ⟨0 |Ψ⟩ |0⟩ ⊗ |0⟩+ ⟨1 |Ψ⟩ |0⟩ ⊗ |1⟩

Thus if |Φ⟩ = |0⟩ the first gate is redundant and can be removed, while the other two cannot.
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(b)

Denote |a⟩ = a0 |0⟩+ a1 |1⟩.

LHS: |x⟩ ⊗ |y⟩ ⊗ |z⟩
Apply |0⟩ ⟨0| ⊗ 1 ⊗ 1 + |1⟩ ⟨1| ⊗ 1 ⊗ X̂ → ⟨0 |x⟩ |0⟩ ⊗ |y⟩ ⊗ |z⟩+ ⟨1 |x⟩ |1⟩ ⊗ |y⟩ ⊗ X̂ |z⟩

= x0 |0⟩ ⊗ |y⟩ ⊗ |z⟩+ x1 |1⟩ ⊗ |y⟩ ⊗ (z1 |0⟩+ z0 |1⟩)

RHS: |x⟩ ⊗ |y⟩ ⊗ |z⟩

Apply
(
|0⟩ ⟨0| ⊗ 1 + |1⟩ ⟨1| ⊗ X̂

)
⊗ 1 →

(
⟨0 |x⟩ |0⟩ ⊗ |y⟩+ ⟨1 |x⟩ |1⟩ ⊗ X̂ |y⟩

)
⊗ |z⟩

= [x0 |0⟩ ⊗ |y⟩+ x1 |1⟩ ⊗ (y1 |0⟩+ y0 |1⟩)]⊗ |z⟩

Apply 1 ⊗
(
|0⟩ ⟨0| ⊗ 1 + |1⟩ ⟨1| ⊗ X̂

)
→ (x0 |0⟩ ⊗ ⟨y | 0⟩ |0⟩+ x1y1 |1⟩ ⊗ |0⟩)⊗ |z⟩

+ [x0 |0⟩ ⊗ ⟨y | 1⟩ |1⟩+ x1y0 |1⟩ ⊗ |1⟩]⊗ X̂ |z⟩
= (x0y0 |0⟩ ⊗ |0⟩+ x1y1 |1⟩ ⊗ |0⟩)⊗ |z⟩

+ (x0y1 |0⟩ ⊗ |1⟩+ x1y0 |1⟩ ⊗ |1⟩)⊗ (z1 |0⟩+ z0 |1⟩)

Apply
(
|0⟩ ⟨0| ⊗ 1 + |1⟩ ⟨1| ⊗ X̂

)
⊗ 1 → x0y0 |0⟩ ⊗ |0⟩ ⊗ |z⟩+ x0y1 |0⟩ ⊗ |1⟩ ⊗ (z1 |0⟩+ z0 |1⟩)

+ x1y1 |1⟩ ⊗ |1⟩ ⊗ |z⟩+ x1y0 |1⟩ ⊗ |0⟩ ⊗ (z1 |0⟩+ z0 |1⟩)

Apply 1 ⊗
(
|0⟩ ⟨0| ⊗ 1 + |1⟩ ⟨1| ⊗ X̂

)
→ x0y0 |0⟩ ⊗ |0⟩ |z⟩+ x1y0 |1⟩ ⊗ |0⟩ ⊗ (z1 |0⟩+ z0 |1⟩)

+ x0y1 |0⟩ ⊗ |1⟩ ⊗ (z1 |1⟩+ z0 |0⟩) + x1y1 |1⟩ ⊗ |1⟩ ⊗ (z1 |0⟩+ z0 |1⟩)
= x0 |0⟩ ⊗ (y0 |0⟩+ y1 |1⟩)⊗ |z⟩+ x1 |1⟩ ⊗ (y0 |0⟩+ y1 |1⟩)⊗ (z1 |0⟩+ z0 |1⟩)
= x0 |0⟩ ⊗ |y⟩ ⊗ |z⟩+ x1 |1⟩ ⊗ |y⟩ ⊗ (z1 |0⟩+ z0 |1⟩)

=
[
|0⟩ ⟨0| ⊗ 1 ⊗ 1 + |1⟩ ⟨1| ⊗ 1 ⊗ X̂

]
[|x⟩ ⊗ |y⟩ ⊗ |z⟩]

Thus the diagrams are equivalent.

(c)

[
Ĥ⊗ 1

] [
1 ⊗ |0⟩ ⟨0|+ Ẑ⊗ |1⟩ ⟨1|

] [
Ĥ⊗ 1

]
= Ĥ1Ĥ⊗ 1 |0⟩ ⟨0|1 + ĤẐĤ⊗ 1 |1⟩ ⟨1|1

= 1 ⊗ |0⟩ ⟨0|+ X̂⊗ |1⟩ ⟨1| (as Ĥ
2
= 1, ĤẐĤ = X̂)
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[
Ĥ⊗ 1

] [
|0⟩ ⟨0| ⊗ 1 + |1⟩ ⟨1| ⊗ Ẑ

] [
Ĥ⊗ 1

]
= Ĥ |0⟩ ⟨0| Ĥ⊗ 111 + Ĥ |1⟩ ⟨1| Ĥ⊗ 1Ẑ1

=
1√
2
(|0⟩+ |1⟩) 1√

2
(⟨0|+ ⟨1|)⊗ 1

+
1√
2
(|0⟩ − |1⟩) 1√

2
(⟨0| − ⟨1|)

(as Ĥ |x⟩ = 1√
2
(|0⟩+ (−1)x |1⟩))

=
1

2
(|0⟩ ⟨0|+ |0⟩ ⟨1|+ |1⟩ ⟨0|+ |1⟩ ⟨1|)⊗ (|0⟩ ⟨0|+ |1⟩ ⟨1|)

+
1

2
(|0⟩ ⟨0| − |0⟩ ⟨1| − |1⟩ ⟨0|+ |1⟩ ⟨1|)⊗ (|0⟩ ⟨0| − |1⟩ ⟨1|)

(as 1 = |0⟩ ⟨0|+ |1⟩ ⟨1|, Ẑ = |0⟩ ⟨0| − |1⟩ ⟨1|)

=
1

2
(|0⟩ ⟨0|+ |1⟩ ⟨1|)⊗ (|0⟩ ⟨0|+ |1⟩ ⟨1|+ |0⟩ ⟨0| − |1⟩ ⟨1|)

+
1

2
(|0⟩ ⟨1|+ |1⟩ ⟨0|)⊗ (|0⟩ ⟨0|+ |1⟩ ⟨1| − |0⟩ ⟨0|+ |1⟩ ⟨1|)

= (|0⟩ ⟨0|+ |1⟩ ⟨1|)⊗ |0⟩ ⟨0|+ (|0⟩ ⟨1|+ |1⟩ ⟨0|)⊗ |1⟩ ⟨1|
= 1 ⊗ |0⟩ ⟨0|+ X̂⊗ |1⟩ ⟨1|

(as 1 = |0⟩ ⟨0|+ |1⟩ ⟨1|, X̂ = |0⟩ ⟨1|+ |1⟩ ⟨0|)

Thus the last two diagrams are equivalent to the first.

(d)

From (b) we have that the first four gates are equivalent to |0⟩ ⟨0| ⊗ 1⊗ 1+ |1⟩ ⟨1| ⊗ 1⊗ X̂. From (c) we
have that the last two gates are equivalent to 1 ⊗ 1 ⊗ |0⟩ ⟨0|+ X̂⊗ 1 ⊗ |1⟩ ⟨1|. Thus the entire circuit is
equivalent to(

1 ⊗ 1 ⊗ |0⟩ ⟨0|+ X̂⊗ 1 ⊗ |1⟩ ⟨1|
)(

|0⟩ ⟨0| ⊗ 1 ⊗ 1 + |1⟩ ⟨1| ⊗ 1 ⊗ X̂
)

= |0⟩ ⟨0| ⊗ 1 ⊗ |0⟩ ⟨0|+ |1⟩ ⟨1| ⊗ 1 ⊗ |0⟩ ⟨0| X̂ + X̂ |0⟩ ⟨0| ⊗ 1 ⊗ |1⟩ ⟨1|+ X̂ |1⟩ ⟨1| ⊗ 1 ⊗ |1⟩ ⟨1| X̂
= |0⟩ ⟨0| ⊗ 1 ⊗ |0⟩ ⟨0|+ |1⟩ ⟨1| ⊗ 1 ⊗ |0⟩ ⟨1|+ |1⟩ ⟨0| ⊗ 1 ⊗ |1⟩ ⟨1|+ |0⟩ ⟨1| ⊗ 1 ⊗ |1⟩ ⟨0| .

Applying this to |ψ⟩ ⊗ |χ⟩ ⊗ |0⟩ then gives

⟨0 |ψ⟩ |0⟩ ⊗ |χ⟩ ⊗ |0⟩+ 0 + 0 + ⟨1 |ψ⟩ |0⟩ ⊗ |χ⟩ ⊗ |1⟩ = |0⟩ ⊗ |χ⟩ ⊗ (ψ0 |0⟩+ ψ1 |1⟩ |1⟩)
= |0⟩ ⊗ |χ⟩ ⊗ |ψ⟩.
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(e)

(1)

|ψ⟩ ⊗ |0⟩ ⊗ |0⟩
Apply 1 ⊗ Ĥ⊗ 1 → |ψ⟩ ⊗ Ĥ |0⟩ ⊗ |0⟩

=
1√
2
|ψ⟩ ⊗ (|0⟩+ |1⟩)⊗ |0⟩

Apply 1 ⊗
(
|0⟩ ⟨0| ⊗ 1 + |1⟩ ⟨1| ⊗ X̂

)
→ 1√

2
|ψ⟩ ⊗ (|0⟩ ⊗ |0⟩+ |1⟩ ⊗ |1⟩)

Apply
(
|0⟩ ⟨0| ⊗ 1 + |1⟩ ⟨1| ⊗ X̂

)
⊗ 1 → 1√

2
⟨0 |ψ⟩ |0⟩ ⊗ (|0⟩ ⊗ |0⟩+ |1⟩ ⊗ |1⟩)

+
1√
2
⟨1 |ψ⟩ |1⟩ ⊗ (|1⟩ ⊗ |0⟩+ |0⟩ ⊗ |1⟩)

=
ψ0√
2
|0⟩ ⊗ (|0⟩ ⊗ |0⟩+ |1⟩ ⊗ |1⟩)

+
ψ1√
2
|1⟩ ⊗ (|1⟩ ⊗ |0⟩+ |0⟩ ⊗ |1⟩)

Apply Ĥ⊗ 1 ⊗ Ĥ → ψ0

2
(|0⟩+ |1⟩)⊗ (|0⟩ ⊗ |0⟩+ |1⟩ ⊗ |1⟩)

+
ψ1

2
(|0⟩ − |1⟩)⊗ (|1⟩ ⊗ |0⟩+ |0⟩ ⊗ |1⟩)

Apply 1 ⊗
(
|0⟩ ⟨0| ⊗ 1 + |1⟩ ⟨1| ⊗ X̂

)
→ ψ0

2
(|0⟩+ |1⟩)⊗ |0⟩ ⊗ |0⟩+ ψ1

2
(|0⟩ − |1⟩)⊗ |0⟩ ⊗ |1⟩

+
ψ0

2
(|0⟩+ |1⟩)⊗ |1⟩ ⊗ |0⟩+ ψ1

2
(|0⟩ − |1⟩)⊗ |1⟩ ⊗ |1⟩

=
ψ0

2
(|0⟩+ |1⟩)⊗ (|0⟩+ |1⟩)⊗ |0⟩

+
ψ1

2
(|0⟩ − |1⟩)⊗ ||0⟩+ |1⟩⟩ ⊗ |1⟩

Apply |0⟩ ⟨0| ⊗ 1 ⊗ 1 + |1⟩ ⟨1| ⊗ 1 ⊗ Ẑ → ψ0

2
|0⟩ ⊗ (|0⟩+ |1⟩)⊗ |0⟩+ ψ1

2
|0⟩ ⊗ (|0⟩+ |1⟩)⊗ |1⟩

+
ψ0

2
|1⟩ ⊗ (|0⟩+ |1⟩)⊗ Ẑ |0⟩ − ψ1

2
|1⟩ ⊗ (|0⟩+ |1⟩)⊗ Ẑ |1⟩

=
ψ0

2
|0⟩ ⊗ (|0⟩+ |1⟩)⊗ |0⟩+ ψ1

2
|0⟩ ⊗ (|0⟩+ |1⟩)⊗ |1⟩

+
ψ0

2
|1⟩ ⊗ (|0⟩+ |1⟩)⊗ |0⟩+ ψ1

2
|1⟩ ⊗ (|0⟩+ |1⟩)⊗ |1⟩

=
1√
2
(|0⟩+ |1⟩)⊗ 1√

2
(|0⟩+ |1⟩)⊗ (ψ0 |0⟩+ ψ1 |1⟩)

= |+⟩ ⊗ |+⟩ ⊗ |ψ⟩

(2)

Following the first (Hadamard) gate, the system is in the state 1√
2
ψ⊗ (|0⟩+ |1⟩)⊗ |0⟩ = |ψ⟩ ⊗ |+⟩ ⊗ |0⟩,

and so the ancilla and target are in the states |+⟩ and |0⟩, respectively.
After the second (C-NOT) gate (just before the red line), the system is in the state 1√

2
|ψ⟩ ⊗

(|0⟩ ⊗ |0⟩+ |1⟩ ⊗ |1⟩), and so the ancilla and target are in the entangled state 1√
2
(|0⟩ ⊗ |0⟩+ |1⟩ ⊗ |1⟩) =

|Ψ00⟩.
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(3)

Alice measuring her two qubits corresponds to |i⟩ ⟨i| ⊗ |j⟩ ⟨j| acting on her two quibits. In terms of the
whole system, this is given by |α⟩ ⟨α| ⊗ |β⟩ ⟨β| ⊗ 1 acting on the system. Acting this on |+⟩ ⊗ |+⟩ ⊗ |ψ⟩
then gives ⟨α |+⟩ |α⟩ ⊗ ⟨β |+⟩ |β⟩ ⊗ |ψ⟩. Regardless of the choice of α, β = 0, 1 (z-basis =⇒ |0⟩ , |1⟩),
Bob’s state |ψ⟩ is unchanged. This is due to the fact that Bob’s target state is no longer entangled with
any other state, and so only measurements on Bob’s state can affect it.

(f)

(|i⟩ ⟨i| ⊗ 1)
(
|0⟩ ⟨0| ⊗ 1 + |1⟩ ⟨1| ⊗ Û

)
[(α |0⟩+ β |1⟩)⊗ |ψ⟩] = (|i⟩ ⟨i| ⊗ 1)

(
α |0⟩ ⊗ |ψ⟩+ β |1⟩ ⊗ Û |ψ⟩

)
= α ⟨i | 0⟩ |i⟩ ⊗ |ψ⟩+ β ⟨i | 1⟩ |i⟩ ⊗ Û |ψ⟩(

|0⟩ ⟨0| ⊗ 1 + |1⟩ ⟨1| ⊗ Û
)
(|i⟩ ⟨i| ⊗ 1) [(α |0⟩+ β |1⟩)⊗ |ψ⟩] =

(
|0⟩ ⟨0| ⊗ 1 + |1⟩ ⟨1| ⊗ Û

)
[(α ⟨i | 0⟩+ β ⟨i | 1⟩) |i⟩ ⊗ |ψ⟩]

= α ⟨i | 0⟩ ⟨0 | i⟩ |0⟩ ⊗ |ψ⟩+ β ⟨i | 1⟩ ⟨1 | i⟩ |1⟩ ⊗ Û |ψ⟩

Thus in both cases the probability of measuring |0⟩ and |1⟩ is |α|2 and |β|2 respectively, and so the
circuits are equivalent.

In the circuit in (e), the final two gates are controlled unitary gates, with Alice’s qubit and the ancilla
qubit acting as the controls. Therefore Alice measuring her qubit or the ancilla qubit at the end of the
circuit is equivalent to measuring them before the last two gates. Before these two gates, the system is
in the state

ψ0

2
(|0⟩+ |1⟩)⊗ (|0⟩ ⊗ |0⟩+ |1⟩ ⊗ |1⟩) + ψ1

2
(|0⟩ − |1⟩)⊗ (|1⟩ ⊗ |0⟩+ |0⟩ ⊗ |1⟩)

=
1

2
[|00⟩ (ψ0 |0⟩+ ψ1 |1⟩) + |01⟩ (ψ0 |1⟩+ ψ1 |0⟩) + |10⟩ (ψ0 |0⟩ − ψ1 |1⟩) + |11⟩ (ψ0 |1⟩ − ψ1 |0⟩)] .

Therefore Bob’s state collapses into one of four states once Alice measures one of |00⟩, |01⟩, |10⟩, |11⟩. If
Alice communicates the results of measuring her qubit and the ancilla qubit to Bob, then Bob can apply
the appropriate gate to his qubit to obtain |ψ⟩. In particular,

Alice measuring |00⟩ → ψ0 |0⟩+ ψ1 |1⟩ Bob applying 1 → ψ0 |0⟩+ ψ1 |1⟩ = |ψ⟩
Alice measuring |01⟩ → ψ0 |1⟩+ ψ1 |0⟩ Bob applying X̂ → ψ0 |0⟩+ ψ1 |1⟩ = |ψ⟩
Alice measuring |10⟩ → ψ0 |0⟩ − ψ1 |1⟩ Bob applying Ẑ → ψ0 |0⟩+ ψ1 |1⟩ = |ψ⟩
Alice measuring |11⟩ → ψ0 |1⟩ − ψ1 |0⟩ Bob applying ẐX̂ → ψ0 |0⟩+ ψ1 |1⟩ = |ψ⟩

Thus Alice’s qubit |ψ⟩ can be teleported to Bob by replacing the last two gates in the circuit with
measurements on Alice’s qubit and the ancilla qubit, classical communication of these measurements to
Bob, and a gate on Bob’s qubit depending on the result of these measurements.
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