MAU34601 Practical Numerical Simulations Assignment 1 due 07/10/2022

Ruaidhrí Campion 19333850 SS Theoretical Physics

1 Fourth Order Runge-Kutta

$$\frac{dx}{dt} = (1-t)(5-2t)\sqrt{1-x}$$

$$\int_{x_0}^x \frac{dx'}{\sqrt{1-x'}} = \int_{t_0}^t \left(5-7t'+2(t')^2\right) dt'$$

$$-\int_{1-x_0}^{1-x} u^{-\frac{1}{2}} du = 5t' - \frac{7(t')^2}{2} + \frac{2(t')^3}{3} \Big|_{t_0}^t \qquad (v \equiv 1-x')$$

$$-2u^{\frac{1}{2}} \Big|_{1-x_0}^{1-x} = \frac{2t^3}{3} - \frac{7t^2}{2} + 5t \qquad (t_0 = 0)$$

$$-2\sqrt{1-x} + 2\sqrt{1+\frac{3}{4}} = \frac{2t^3}{3} - \frac{7t^2}{2} + 5t \qquad (x_0 = -\frac{3}{4})$$

$$\sqrt{1-x} = -\frac{t^3}{3} + \frac{7t^2}{4} - \frac{5t}{2} + \sqrt{\frac{7}{4}}$$

$$x(t) = 1 - \left(\frac{t^3}{3} - \frac{7t^2}{4} + \frac{5t}{2} - \frac{\sqrt{7}}{2}\right)^2$$

Figure 1: Plot of the approximate (red) and analytic (black) solutions of x(t) for $t \in [0,3]$, h = 0.2.

Figure 2: Plot of the logarithm of the discrepancy between estimated and analytic solution of x(3) against the logarithm of the step-size h. The black line indicates a proportional line of slope 4.045.

From Figure 2, it is clear that the fourth-order Runge-Kutta method has a fourth-order accuracy, as $\log |x_N - x(3)| \approx 4 \log(h) \implies |x_N - x(3)| \approx h^4$.

N	h	x_N
8	0.375	0.62996119
9	0.33333333	0.64920548
10	0.3	0.65850788
:	:	:
297	0.01010101	0.67181347
298	0.010067114	0.67181348
299	0.010033445	0.67181348
:	:	:
500	0.006	0.67181348

Table 1: Values of x_N of the Runge-Kutta method and their corresponding numbers of steps N and step-sizes h, to eight significant figures.

The analytic solution to the differential equation at t=3 to eight significant figures is x(t)=0.67181348. From Table 1, the fourth-order Runge-Kutta method reaches this value at N=298, i.e. a step-size of $h=\frac{3}{298}=0.010067114$ is required for a solution accurate to eight significant figures.

2 Runge-Kutta for higher-order ODEs

Figure 3: Plots of y(x) for $x \in [0,30]$ using the Runge-Kutta method for varying numbers of steps N and step-sizes h.

N	h	y_N
3	10	1.1759×10^{48}
30	1	0.135003
300	0.1	0.0905267
3000	0.01	0.0901524
30000	0.001	0.0901524

Table 2: Values of y_N of the Runge-Kutta method and their corresponding numbers of steps N and step-sizes h, to six significant figures.

From Table 2, for both N=3000, h=0.01 and N=30000, h=0.001, the Runge-Kutte algorithm approximates y(30)=0.0901524, to six significant figures.