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Problem 1

f

(
ai + bi

2

)
> 0 =⇒ Ii+1 =

[
ai,

ai + bi
2

]
⊂ [ai, bi] = Ii

f

(
ai + bi
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)
≯ 0 =⇒ Ii+1 =

[
ai + bi

2
, bi

]
⊂ [ai, bi] = Ii

=⇒ Ii+1 ⊂ Ii ∀i ∈ N
=⇒ Ii+1 ∩ Ii = Ii+1 ∀i ∈ N

∞⋂
i=0

Ii = lim
n→∞

n⋂
i=0

Ii

= lim
n→∞

In (from above)

= lim
n→∞

[an, bn]

Thus it is sufficient to show that lim
n→∞

[an, bn] = {x0}.
Bolzano’s theorem states that for any interval [a, b] such that f(a) ≤ 0 and f(b) ≥ 0 for a continuous

function f , there must be a root in the interval. There thus exists a root on the interval I0 = [a, b]. Say

that for some interval Ii = [ai, bi], we have f(ai) ≤ 0 and f(bi) ≥ 0. Say that f

(
ai + bi

2

)
> 0. Then

Ii+1 = [ai+1, bi+1] =

[
ai,

ai + bi
2

]
, and we have f(ai+1) = f(ai) ≤ 0 and f(bi+1) = f

(
ai + bi

2

)
> 0. Say

that f

(
ai + bi

2

)
≤ 0. Then Ii+1 = [ai+1, bi+1] =

[
ai + bi

2
, bi

]
, and we have f(ai+1) = f

(
ai + bi

2

)
≤ 0

and f(bi+1) = f(bi) ≥ 0. In both of these situations, f(ai+1) ≤ 0 and f(bi+1) ≥ 0, and so by Bolzano’s
theorem, Ii+1 has a root, if f(ai) ≤ 0 and f(bi) ≥ 0. Thus, by induction, Ii contains a root for any i ∈ N.

Since ai ≤ bi ∀i ∈ N, then ai ≤
ai + bi

2
∀i ∈ N. After each iteration we have either ai+1 = ai or

ai+1 =
ai + bi

2
, and so ai either remains constant or increases after each iteration. Since there is always

a root in the interval [ai, bi] ∀i ∈ N, then ai ≤ x0 ∀i ∈ N for some x0 such that f(x0) = 0. Since ai can
only increase, and is always less than some x0, it must converge to a point x1 ≤ x0. We can similarly

show that, since bi ≥
ai + bi

2
, bi can only decrease, and since it must also be greater than some x0, it

converges to a point x2 ≥ x0.
If x1 6= x0 or x2 6= x0, then lim

n→∞
[an, bn] = [x1, x2], which is an interval, as x1 6= x2. If x1 = x2 = x0,

then lim
n→∞

[an, bn] = [x0, x0] = {x0}. Thus we only need to show that this method cannot converge to an

interval.
Say that lim

n→∞
In results in some interval. This would imply that we can still perform an infinite

number of iterations on this interval. Thus, if this method converges to an interval, it has not converged,
which is a contradiction. Thus this method cannot converge to an interval.

Therefore lim
n→∞

[an, bn] = {x0}, and so

∞⋂
i=0

Ii = {x0}.
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Problem 2

Let (xi)i∈N∗ be bounded. Let (xij )j∈N∗ be a subsequence of (xi)i∈N∗ . Since (xi)i∈N∗ is bounded,
and {xij} ⊆ {xi}, then (xij )j∈N∗ must also be bounded. From the Bolzano-Weierstrass theorem,
which states that every bounded sequence has a convergent subsequence, (xij )j∈N∗ must have a con-
vergent subsequence. Thus, if (xi)i∈N∗ is bounded, then every subsequence of (xi)i∈N∗ has a convergent
(sub)subsequence.

Let (xi)i∈N∗ be unbounded. If (xi)i∈N∗ is unbounded from above, then we can choose a subsequence
(xij )j∈N∗ that is always increasing and does not converge, i.e. xin+1 − xin ≥ ε ∀n ∈ N∗ for some ε > 0.
Any subsequence of (xij )j∈N∗ will also clearly not converge, as it will always be increasing, and the
difference in subsequent terms must be greater than or equal to ε. Thus, not every subsequence of
(xi)i∈N∗ has a convergent (sub)subsequence. A similar argument can be made if (xi)i∈N∗ is unbounded
from below, where we can choose a subsequence that is always decreasing and does not converge, and
any subsequence of this subsequence will also not converge. Thus, if (xi)i∈N∗ is unbounded, not every
subsequence of (xi)i∈N∗ has a convergent (sub)subsequence. By contraposition, if every subsequence of
(xi)i∈N∗ has a convergent (sub)subsequence, then (xi)i∈N∗ msut be bounded.

Therefore (xi)i∈N∗ is bounded ⇐⇒ every subsequence of (xi)i∈N∗ has a convergent (sub)subsequence.

Problem 3

Since f is uniformly continuous, then for all α > 0 there exists a β > 0 such that |xn − xm| < β =⇒
|f(xn) − f(xm)| < α for all xm, xn ∈ A. Since (xi)i∈N∗ is a Cauchy sequence, then for all β > 0 there
exists an N such that |xn − xm| < β for all m,n ≥ N . Combining these leads to the following: for all
α > 0 there exists an N such that |f(xn)− f(xm)| < α for all m,n ≥ N . By definition, this implies that
(f(xi)i∈N∗) is also a Cauchy sequence.
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