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Problem 1
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Problem 2

inf{z,} <z, <sup{z,} Vn e N = z, € [inf{z,},sup{z,}] Vn € N
zn, = ¢ = inf{z,} <z <sup{z,}
= 1z € [inf{x, },sup{z,}]

€(0,1)¥n e N = 0 < inf{z,} Asup{z,} <1
Assume inf{z,} =0 = z=0v 3z, =0
(x=0Vv3Iz, =0)A(xz € (0,1) Az, € (0,1)) = contradiction
= inf{z,} >0
Assume sup{z,} =1 = z=1Vv3Iz, =1
(x=1V3z,=1)A(x€(0,1) Az, € (0,1)) = contradiction
= sup{z,} <1
inf{z,} > 0 Asup{z,} <1 = [inf{z,},sup{z,}] C (0,1)

so3a,beR iz, €a,b] Ax € [a,b] Ala,b] C (0,1) (e.g. a =inf{z,}, b=sup{z,})

Problem 3
Let A=Q and B=R\Q
ANB=0QnR\Q) A=Q B=R\Q
-y —R =R
ANB=0 ANB=RNR
= () as 0 is closed =R
ANB=0#R=4ND
ANB#ANB



Problem 4
(a)

JA; : f|a, is not continuous at + = I nbhd U of f(z) € B: A nbhd V of z € A;: f(V)CU
r€A;, CA — zcA
= Jnbhd U of f(x) € B:Pnbhd Vof z € A: f(V)CU
= f is not continuous at x
— f is not continuous

f is continuous = each f|4, is continuous (by contraposition)

fla, is continuous at z = V nbhds U of f(z) € B Inbhd Vofz € A;: f(V)CU
fla, is continuous = f| 4, is continuous at = Vx € A;
= Vnbhds U of f(x) e BInbhd Vofx e A, : f(V)CU Vx € 4;
f
V nbhds U of f(x) € B3Inbhd Vofx e A;: f(V)CUVre A; VA, CA

Each f =
—
— Vnbhds U of f(z) e BInbhd Vofz e A: f(V)CUVxe A
.
.

A, is continuous A, is continuous at z Vo € A; VA; C A

f is continuous at z Vx € A

f is continuous
. [ is continuous <= each f|4, is continuous
(b)
The proofs above do not assume if A is a finite or an infinite union of subsets A4;, and all assumptions

made apply for both a finite and infinite union of subsets. Thus, the same is true if we allow for an
infinite number of A;’s.



