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Problem 1

Assume a <sup{r € Q|r<a} = ac{reQ|r<a}
a¢{reQ|r<alNac{reQ|r<a} = contradiction
sagsup{reQ|r<a}

Assume a >sup{r € Q|r<a} = JgeQ:sup{reQ|r<a}<g<a
gEQAg<a = qe{reQ|r<a}
sup{r e Q| r<a}<qge{reQ|r<a} = contradiction
sapsup{reQ|r<a}l

Therefore a = sup{r € Q | r < a}.

Problem 2

Since every finite intersection of open subsets is open, then if two subsets of the real numbers A and B
are open, their intersection will also be open. If we define A = (a,00) and B = (—o00,b), with a < b,
then their intersection is equal to (a,b). If (a,00) and (—o0,b) are open subsets, then their intersection
(a,b) is open.

Say (a,0) is not open
(r+¢€ € (a,0)Vx € (a,00),e € R)

Jz € (a,00) : (x —e,x+¢) € (a,00) Ve € R
Jz € (a,0) : (x —e,2) € (a,00) Ve € R

Say x > a FeRiz—e>a = FecR:(z—¢,2)C(a,0)

_—
N
_—
— z<a

= z ¢ (a,00)

This is a contradiction, as (a,00) being not open implies that there exists an element in (a,c0) that is
also not an element. Thus, (a,c0) must be an open subset. A similar argument can be made for (—o0, b),
where if it is assumed that it is not open, there is an element that is not an element. Thus (—o0, b) must
also be open.

Since (a,00) and (—oo, b) are open subsets, their intersection (a,b) must also be open.

Problem 3

Say that sup A exists = sup A = min{z € F | z is an upper bound}
— —supA = —min{x € F | z is an upper bound}
— —sup A = max{—z € F | z is an upper bound}
— —sup A =max{—z € F| —z is a lower bound}
= —sup A = inf(—A)



Say that inf B exists = —inf B = —max{z € F' | z is a lower bound}
= —inf B =min{—x € F' | z is a lower bound}
= —inf B=min{—2 € F'| — z is an upper bound}
— —inf B = sup(—B)
= inf B = —sup(—B)
inf(—A) exists = inf(—A) = —sup 4

—sup A = inf(—A) = sup A exists A inf(—A) exists
sup A exists = —sup A = inf(—A)
inf(—A) exists = —sup A = inf(—A)

- sup A exists <= inf(—A) exists <= —sup A = inf(—A)
Problem 4

Assume max A >supA =— Ja€ A:a>supA
—> contradiction
c.max A #sup A

Assume max A <supA — g€ Q: max A < g <supA
— ¢ is an upper bound
q is an upper bound A ¢ < sup A = contradiction
c.max A £ sup A

Therefore if max A exists, max A = sup A.



