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1 Abstract

In this project, the Qi-Wu-Zhang (QWZ) model [1] is studied.
The energy eigenvalues of the QWZ Hamiltonian matrix are calculated for various values of the

energy splitting, and the correspondence between energy and bulk/edge state is shown for both trivial
and non-trivial topology.

An impurity is introduced into the system, and the decoherence over time is calculated for a variety of
system parameters (system size, energy splitting, temperature, impurity location, coupling strength).
The effect of varying these parameters is demonstrated by plotting the decoherence magnitude and
phase as a function of time for each set of parameters.

2 Introduction

2.1 QWZ Model

The QWZ model [1] consists of a 2D grid of lattice sites capable of hosting a fermion with two flavour
states. For a system of size Lx × Ly, on-site energy ω0, flavour energy splitting m, and tunneling
amplitudes tX , tY , the Hamiltonian Ĥ0 = Ĥm + ĤX + ĤY is given by [2]

Ĥm =

Lx∑
x=1

Ly∑
y=1

â†x,y · (ω0I+mσz) · âx,y,

ĤX =
tX
2

Lx∑
x=1

Ly∑
y=1

â†x+1,y · (σz + iσy) · âx,y + h.c.,

ĤY =
tY
2

Lx∑
x=1

Ly∑
y=1

â†x,y+1 · (σz + iσx) · âx,y + h.c.,

(1)

where

âx,y =

(
âx,y,↑
âx,y,↓

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

The eigenvalues of the matrix ĥ0, defined as

ĥ0 = (hi,j), Ĥ0 =

2LxLy∑
i,j=1

â†i hi,j âj , (2)

correspond to the energy spectrum of the system, where the sum is over all combinations of coordinates
and flavour; a convenient conversion of indices (x, y, s) → k may be given by

k = x+ (y − 1)Lx + sLxLy. (3)

The value of m (relative to tX and tY ) determines if the system is a topological or trivial insulator
(i.e. Figure 1).

2.2 Impurity & Decoherence

An impurity, i.e. an on-site energy shift V̂ = ∆ â†x,y · âx,y of coupling strength ∆, can be introduced
to the system, resulting in the perturbed Hamiltonian Ĥ1 = Ĥ0 + V̂ and matrix ĥ1 = ĥ0 + v̂ defined
accordingly. Letting |ψ(0)⟩ be the initial fermion state and defining

Ĥ = |0⟩ ⟨0| ⊗ Ĥ0 + |1⟩ ⟨1| Ĥ1, |Ψ(0)⟩ = |+⟩ ⊗ |ψ(0)⟩ ,

|+⟩ = 1√
2
(|0⟩+ |1⟩) , |Ψ(τ)⟩ = e−iĤτ |Ψ(0)⟩ ,
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it can be shown that

|| ⟨+ |Ψ(τ)⟩ ||2 = 1

2
[1 + Re(ν(τ))] ,

where the decoherence function ν(τ) is defined as [3]

ν(τ) =
〈
ψ(0)

∣∣∣ eiĤ0τe−iĤ1τ
∣∣∣ψ(0)〉

= det
[
Î− n̂+ n̂eiĥ0τe−iĥ1τ

]
, (4)

n̂ =
(
1 + eβ(ĥ0−µ)

)−1
.

While Equation 4 can be used to calculate the decoherence at any point in time, it is far more
computationally efficient to convert basis to diagonalise ĥ0 and ĥ1, so that each exponential term
in the determinant requires exponentiating 2LxLy terms as opposed to a 2LxLy × 2LxLy matrix.
Denoting

Ê = Û †ĥ0Û Ŝ = Û †n̂Û D̂ = Ŵ †ĥ1Ŵ

= diag(E1, . . .), = diag
((

1 + eβ(E1−µ)
)−1

, . . .

)
, = diag(d1, . . .),

where Û , Ŵ , E1, . . ., and d1, . . . are the eigenvectors and eigenvalues of ĥ0 and ĥ1, respectively,
Equation 4 can be rewritten as

ν(τ) = det
[
Î− Ŝ + ŜeiÊτM̂e−iD̂τM̂ †

]
, (5)

M̂ = Û †Ŵ .

3 Method

Using Equation 1, Equation 2, and Equation 3, the energies of a 20 × 20 model with tX = tY ≡ t
and m = 0, t, . . . , 5t were calculated and plotted (Figure 1a). The bulk and edge probabilities for each
eigenstate were also calculated and compared to their corresponding eigenvalue (Figure 1b).

Using Equation 5, and setting tX = tY ≡ t = kB = 1 and ω0 = 0 for convenience, the decoherence
was calculated for

• L = 3, 5, . . . , 27, 29;

• m = 1, 3;

• T = 10−4, 10−3.5, . . . , 100.5, 101;

• µ = 0;

• corner, edge, and center impurity location;

• ∆ = 10−4, 10−3.5, . . . , 100.5, 101;

• τ ∈
[
0, 20∆

]
.a

aThis ∆-dependent time range was chosen as it was noticed that the frequency of the decoherence phase θ(τ) had an
approximately linear dependence on the coupling strength ∆, and so the final time was chosen to have an inversely
proportional relationship to ∆, in order to plot meaningful graphs of θ(τ). This poses a problem mainly when plotting
with multiple values of ∆ on a single plot, e.g Figure 5.
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Using these calculated values, the decoherence magnitude |ν(τ)| and phase θ(τ) were plotted for each
combination of these parameters, as well as − log10(|ν(τ)|) on linear and logarithmic time axes.b

The estimate of the frequency f of the decoherence phase was also calculated for L = 29, µ = 0,
and all other parameters as above. This was carried out by locating the times τi at which θ(τi) = 0,
calculating the length of time in between each of these, and taking the median of these times to be
the phase period.c

4 Results

4.1 Topological Behaviour & Bulk/Edge States

From Figure 1a, the system exhibits topologically non-trivial behaviour for m < 2t and trivial be-
haviour for m > 2t, for tX = tY ≡ t.

From Figure 1b, the values that connect the energy bands for m = t correspond to edge states,
whereas the energy bands for m = t, 3t correspond to bulk states.
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(a) Eigenvalues form = 0, t, . . . , 5t, split into the topologically non-
trivial (top) and trivial (bottom) regimes.
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(b) Reproduction of Figure 1(c)
from Mitchison et al. [2]
(middle) showing eigenvalues
for m = t, 3t, with extra
plots (top & bottom) showing
the corresponding bulk/edge
state probability.

Figure 1: Energy eigenvalues of ĥ0 for Lx × Ly = 20× 20 and tX = tY ≡ t.

bIt was decided to also plot − log10(|ν(τ)|) to help determine any possible relationships between the parameters.
cThe median of these times was assumed to be the period as it was noticed that the phase oscillated very rapidly for

certain parameters, e.g. Figure 6, and so there would be some times that corresponded to θ = 0 but not to a full
period.
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4.2 Decoherence Magnitude

Energy Splitting The decoherence magnitude tended to decrease at a faster rate for m = 1
(topological insulator) than for m = 3 (trivial insulator) (Figure 2a), although the rates were more
comparable at higher temperatures and coupling strengths (Figure 2b).
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Figure 2: Graphs of |ν(τ)| (top) and − log10(|ν(τ)|) (bottom) on linear (left) and logarithmic (right)
time axes, for L = 29, m = 1, 3, µ = 0, and corner, edge, and centre impurity location.
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4.3 Decoherence Phase

4.3.1 Coupling Strength Proportionality

One of the most obvious relationships that was observed was the proportionality between decoherence
phase frequency f and coupling strength ∆ (Figure 3). For L = 29, µ = 0, and ∆ ⩽ 100.5, it was found
that f ≈ 0.15873∆ (Figure 3a), with slight deviations occurring at ∆ > 10−0.5 for m = 1 (Figure 3b)
or T > 100.5 (Figure 3c).
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Figure 3: Graphs of frequency f median against coupling strength ∆ for L = 29 and µ = 0. In each
plot, the dashed line represents f = 0.15873∆.
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4.3.2 Rate of Change

While for the largest system size considered in this project, i.e. L = 29, the rate of change of the de-
coherence phase θ was constantly negative (with some fluctuations for some parameter combinations),
it was noticed for L ⩽ 27, m = 3, and ∆ ⩾ 10−0.5 that certain parameter combinations resulted in
a positive rate of change with a frequency not obeying the same proportionality law (Figure 4). The
combinations of parameters that resulted in unexpected phase behaviour are detailed in Table 1.
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Figure 4: Graph of |ν(τ)| (top) and θ(τ) (bottom) for L = 27, m = 1, 3, T = 0.1, µ = 0, corner,
edge, and centre impurity location, and ∆ = 10. For m = 3 and edge and center impurity
locations, the phase has a positive rate of change and a much smaller frequency than other
combinations of m and impurity location.

∆ = 10−0.5 100 100.5 ∆ = 101

L = 3 corner
5 corner corner, edge
7 edge edge, centre
9 corner, edge, centre
11
13
15 corner corner, centre
17 centre
19 edge, centre
21 corner
23 corner corner, edge
25 corner corner, edge

L = 27 centre edge, centre

Table 1: Values of L, ∆, and impurity location that resulted in unexpected phase behaviour for m = 3
and µ = 0. Blank cells correspond to expected behaviour (i.e. negative rate of change
following a similar proportionality law) for corner, edge, and centre impurity location.
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6 Appendix

The code and graphs produced for this project can be found here.
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