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1 Abstract

In this project, the application of Markov Chain Monte Carlo (MCMC) methods is studied. Random
variables are generated using an MCMC algorithm, and a relationship between the algorithm’s internal
parameter and the random variable’s parameter is established by investigating visual distributions,
thermalisation, and integrated autocorrelation times. A similar approach is used for observables of a
physical model, where two algorithms are directly compared. Finally, methods on how to obtain more
accurate results using Monte Carlo integration are briefly discussed.

2 Introduction

2.1 Monte Carlo Methods

Monte Carlo methods are a type of computer algorithm that involve random sampling. While in theory
these methods can be used to solve simple problems, they are far outmatched by other deterministic
methods, such as Simpson’s rule. [1] It is only for complicated problems such as statistical mechanical
systems where Monte Carlo methods become useful.

The validity of Monte Carlo methods is based upon the law of large numbers, namely

lim
N→∞

N∑
i=1

g(Xi)

N
= E[g(X)],

where Xi, X are identically distributed random variables. By using Monte Carlo methods to generate
a sufficiently large number of points, this expected value can be approximated. If the generated points
are independent of one another, then the mean squared error of the data is σ2

N , where σ2 is the variance
of the random variable.

2.2 Markov Chains

A Markov chain is a sequence of data points where each state is solely determined by the previous
state. More explicitly,

P{Xn+1 = xi |Xn = xj , Xn−1 = xjn−1 , . . . , X0 = xj0} = P{Xn+1 = xi |Xn = xj} ∀ i, j, jk, n.

An extra condition can be imposed in the case of a homogeneous Markov chain, where the probabilities
do not depend on the location of the event in the chain. In practice, when one wants to sample from
a probability distribution, a Markov process whose equilibrium distribution is the desired distribution
is constructed, generating a sequence of sampled points.

2.3 Thermalisation

One hurdle that must be overcome when using Markov Chain Monte Carlo (MCMC) methods is
thermalisation (also called stabilisation or equilibration). If the initial point in the chain is far from
equilibrium, then it might take a considerable amount of time until the algorithm sufficiently ther-
malises, i.e. reaches a point close to equilibrium. When using MCMC methods, it is often wise to
generate more samples than required and discard the a certain number of the first points.

2.4 Autocorrelation

By definition, MCMC methods do not generate independent data points. Thus, the mean squared error
of the data is not the “naive” σ2

N , but rather σ2

Neff
, where Neff is the number of effectively independent

points.
One approach to calculating the true mean squared error is the binning method. [2] This method

involves grouping bins of data of size b and taking its average as a single point in a new chain, generating
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Nb ≡ N
b points. Repeating this will lead to the value of σ2

Nb
converging to the true mean squared error

of the data. A useful quantity called the integrated correlation time τint is given by

τint = lim
Nb→∞

σ2

Nb

σ2

N

,

and can be interpreted as the number of points needed to be generated equivalent to a single indepen-
dent point.

2.5 Algorithms

There are many different types of MCMC algorithms used in practice for sampling from a distribution
p(x). One such algorithm is the Metropolis-Hastings algorithm. [3] Given a point x in the Markov
chain, a new point y is generated from the uniform distribution [x − δ, x + δ], where δ is the step
size parameter of the algorithm. If p(y) ⩾ p(x), then y is accepted as the next point in the chain.
Otherwise, y is accepted with a probability p(y)

p(x) .

3 Continuous Distributions

One straightforward application of MCMC methods is the generation of random variables. In this
project, the Metropolis-Hastings algorithm was employed to generate samples from normal distribu-
tions (N (0, σ)) and exponential distributions (Exp(λ)) to establish a relationship between the distri-
bution parameters and the optimal choice of step size δ.

3.1 Sampling

From generating normal and exponential distributions varying both σ/λ and δ (Figure 1), the choice
of step size was easily seen to strongly influence the validity of the generated points.

3.2 Thermalisation

To determine which choice of step size resulted in the quickest thermalisation, the time for the algorithm
to reach certain points was calculated for various starting points. In particular, the time (i.e. number
of points) t< to pass from one side of the mean to the other and the times t1, t2, t3 to be within one,
two, and three standard deviations of the mean were calculated (Figure 2). For each choice of σ and
λ, it was found that a step size of δ ≈

√
10Var(X) minimised these times, where Var(X) represents

the variance of the distribution in question.

3.3 Autocorrelation

Finally, using the binning method (Figure 3), the integrated autocorrelation times for the mean of
each distribution and the integrals f1, f2 were estimated (Figure 4), where

f1 =

∫ ∞

−∞

e−|x|

2

e−
x2

2

√
2π

dx = EN (0,1)

[
e−|x2|

2

]
=

√
e

2
erf

(
1√
2

)
,

f2 =

∫ ∞

0
e−x 2e−

x2

2

√
2π

dx = EExp(1)

2e−
x2

2

√
2π

 =
√
e erf

(
1√
2

)
.

As was the case with thermalisation, the choice of δ ≈
√
10Var(X) was found to be optimal for

reducing integrated correlation times.
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4 Ising Model

While MCMC methods can be used to generate random variables, they are often not used in this
fashion as there are other methods that can generate independent samples much quicker. A more
reasonable approach is to use these methods to calculate observables of physical models. One such
example is the Ising model, a grid made up of spin sites which interact with their nearest neighbours
and a magnetic field. While the Ising model may consist of a grid of any dimension and a magnetic field,
this project deals with the case of the two-dimensional Ising model with no external field, governed
by the Hamiltonian [4]

H = −g
∑
i,j

si,j (si+1,j + si,j+1) ,

where g determines the strength of the interactions and si,j = ±1 represents a value of ±1 at site
(i, j). The probability mass function of the model is given by

p(S) ∝ e−βH(S),

where S is a configuration of spins, and β = (kBT )
−1 is the thermodynamic beta at temperature T .

The critical temperature Tc, i.e. the temperature at which a change of phase occurs, is given by [5]

Tc =
2|g|

kB ln(1 +
√
2)
.

Observables of interest for the Ising model include energy, magnetisation, and heat capacity at constant
volume, given by

U = H(S), M =
∑
i,j

si,j , cV = kBβ
2Var(U).

4.1 Algorithms

For generating random variables, it was reasonable to study the effects of varying the step size pa-
rameter δ. For the Ising model, however, there is no such parameter, as MCMC methods are used
to attempt spin flips for each site. Instead, the Metropolis-Hastings and heat bath algorithms were
used to calculate the energy U , magnetisation M , and heat capacity cV of the system for a range of
temperatures in the cases of g > 0 and g < 0.

The Metropolis-Hastings algorithm for the Ising model is similar to that for the continuous distri-
butions, accepting a spin flip if it results in a lower energy or with a probability e−β(E′−E). The heat
bath algorithm, however, is slightly different, accepting a spin flip with probability e−βE′

e−βE+e−βE′ . The
notable difference between these two is that the heat bath algorithm does not always accept a spin
flip that results in a lower energy.

4.2 Modifications

When calculating the heat capacity of the system using the heat bath algorithm, it was noticed that
the resulting graph contained some unexpected sharp peaks for low temperatures (Figure 5). This
was due to the fact that the algorithm had not sufficiently thermalised once measurements began, and
so the algorithm was re-run for low temperatures beginning at the configuration that was previously
reached by the algorithm, i.e. the point assumed to be close to the equilibrium configuration.

4.3 Autocorrelation

Using the binning method, the integrated correlation times for energy and magnetisation were cal-
culated for both algorithms (Figure 6). The integrated correlation times for the heat capacity were
unable to be calculated using the binning method, as many of the graphs were not useful (Figure 7).
This is most likely due to the fact that the mean squared error of the heat capacity involves calculating
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the variance of the variance of the energy, which can be difficult to calculate, and so many more points
would need to be generated to overcome this.

For the energy calculations, the Metropolis-Hastings algorithm was far superior in terms of a lower
integrated correlation time, however an interesting result is that for g = −1, both algorithms generate
points with an integrated correlation time less than 1, which corresponds to each point in the Markov
chain being multiple effectively independent points.

4.4 Observables

In each case, the true error of each observable was negligible, as can be seen from the graphs of energy
and magnetisation (Figure 8). While the Metropolis-Hastings algorithm is much preferable in terms
of integrated correlation times, there is little to no difference in the calculations of the observables.

5 Variance Reduction

Two popular methods of variance reduction are antithetic variables and control variates. [3]
For a random variable X = h(U1, . . . , Um) that depends on m independent uniform distributions

U1, . . . , Um on (0,1), then X ′ = h(1−U1, . . . , 1−Um) will have the same distribution as X. In the case
that h is a monotonic function of each of its variables, then X and X ′ will be negatively correlated.
Thus, given a sample point Xi, generating X ′

i will result in a more accurate estimate than generating
Xj . This is the antithetic variables approach, and is very straightforward to implement.

The control variate approach, however, does not require X to be a monotone function of random
numbers. This approach uses the fact that X and X ′ = X + c(Y − µy) have the same distribution,
where Y is a distribution with known expected value µy, and c is any constant. The variance of X ′

is minimised for c = −Cov(X,Y)
V ar(Y ) , leading to Var(X ′) = Var(X)− [Cov(X,Y )]2

Var(Y ) . Thus, when X and Y are
strongly correlated, the variance of X ′ is much smaller than that of X.

These methods were used to calculate various one-dimensional and ten-dimensional integrals (Fig-
ure 9). There seemed to be little to no difference between the two for the one-dimensional integrals,
however the antithetic approach was comparable to no variance reduction for the ten-dimensional
integrals.

6 Conclusion

This project focused on the different types of parameters and algorithms in Markov Chain Monte
Carlo methods, and how an optimal choice can improve calculations dramatically. As these methods
are widely used in areas such as statistical physics and quantum field theory, it is of the upmost
importance that such algorithms are chosen and studied carefully when being employed.
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Figure 1: N (0, 1) and Exp(1) distributions generated from Metropolis-Hastings algorithms with step
sizes δ = 10−2, 10
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