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Abstract

This project introduces the basic yet fundamental concepts behind studying quantum field
theories on lattice models using numerical algorithms, and focuses on the calculation of the
two-point correlation function for Klein-Gordon theory and the SU(2) non-linear sigma model.

Klein-Gordon fields are explored with the intent of debugging and optimising computer pro-
grammes written to simulate fields on a lattice, by comparing two approaches to writing com-
puter programmes in the context of runtime. It is deduced that the Gibbs sampler is preferable
to the Metropolis-Hastings algorithm due to its comparable calculation speeds, higher accura-
cies, smaller intergated correlation times, and lack of fine-tuning of an external parameter. The
Klein-Gordon study is concluded by determining relationships between the integrated correla-
tion time and the parameters of the system.

A brief analysis of the SU(2) non-linear sigma model Gibbs sampler is made to ensure efficient
and accurate calculations, and the mass parameters of the model in two and three dimensions
are determined from calculations of the two-point correlation for a small range of system pa-
rameters. A more detailed study of the model is carried out in three dimensions; the bare
mass of the pion field is verified in the low-temperature limit, and the temperature range for a
theoretical particle decay is determined. A measure of the efficiency of the Gibbs sampler for
the model was obtained through a brief investigation of the accuracy and runtime for a variety
of system parameters.

Conventions

This project uses natural units c = ℏ = kB = 1.
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1 Lattice Field Theory

1.1 Klein-Gordon Theory

The action of a real non-interacting scalar boson of mass m in d-dimensional Euclidean space
is given by the Klein-Gordon action [1, 2]

S(ϕ) =
1

2

∫
ddxϕ(x)

(
−□+m2

)
ϕ(x),

□ ≡
d∑
i=1

∂2

∂x2i
.

(1)

Under the lattice parameterisation
xi ≡ ani (2)

for a regular d-dimensional spacetime lattice of size L1×· · ·×Ld with grid spacing a, site vectors
ei, and periodic boundary conditions, this action can be represented as a function of the fields
ϕ(x) at each lattice site x =

∑d
i=1 xiei = (x1, . . . , xd), and is given by (A.1)

S(ϕ) =
∑
x

ϕ(x)

(
2d+ (am)2

2
ϕ(x)−

d∑
i=1

ϕ(x+ ei)

)

=
∑
x

ϕ(x)

2

(
ϕ(x)

κ2
− γ(x)

)
,

(3)

where

κ ≡
(
2d+ (am)2

)− 1
2 ,

γ(x) ≡
d∑
i=1

(ϕ(x− ei) + ϕ(x+ ei)) .
(4)

1.2 Non-Linear Sigma Model

The non-linear sigma model [3] describes a scalar field ϕϕϕ ≡ (σ,πππ) taking values in the manifold
M = SN−1, i.e. satisfying the condition

ϕϕϕ ·ϕϕϕ = σ2 + πππ · πππ = 1, (5)

with πππ an (N − 1)-dimensional vector. This project focuses on the N = 4 case, i.e. M = S3 ∼=
SU(2), known as the SU(2) non-linear sigma model or the chiral model [4]. The action of the
model is given by

S(ϕϕϕ) =
β

2

∫
ddx Tr

[
∂µϕϕϕ

†(x)∂µϕϕϕ(x)− λ0ϕϕϕ(x)
]
, (6)

where β ≡ 1
T is the inverse temperature, and λ0 is a free parameter.

In general, elements u of SU(2) are 2 × 2 unitary matrices (u†u = uu† = I) with unit
determinant, and can be represented as a 4-tuple of real numbers {u0, u1, u2, u3} with

u = u0I+ i
3∑

k=1

ukτk =

(
u0 + iu3 u2 + iu1
−u2 + iu1 u0 − iu3

)
∈ SU(2)

=⇒ u0u0 +

3∑
k=1

ukuk = 1, Tru = 2u0,

(7)
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where the Pauli matrices τk are defined as

τ1 ≡
(

0 1
1 0

)
, τ2 ≡

(
0 −i
i 0

)
, τ3 ≡

(
1 0
0 −1

)
. (8)

Therefore, with u = ϕϕϕ, u0 = σ, and (u1, u2, u3) = πππ, the condition given in Equation 5 is met.
If λ0 = 0, then the action (Equation 6) is invariant under an SU(2)L × SU(2)R chiral

symmetry, i.e. under ϕϕϕ→ ULϕϕϕU
†
R; if λ0 ̸= 0, then the action is invariant under an SU(2) isospin

symmetry, i.e UL = UR (A.2). Three pseudo-Goldstone bosons [5] of mass m2 = βλ0 appear
when this chiral symmetry is explicitly broken, and correspond to the pion fields πππ = (π1, π2, π3)
(A.2).

Under the same lattice parameterisation as before (Equation 2), Equation 6 can be written
as (A.3)

S(ϕϕϕ) = −β
2

∑
x

Tr

[
ϕϕϕ(x)

(
λ0I+

d∑
i=1

ϕϕϕ†(x+ ei)

)]

= −β
4

∑
x

Tr
(
ϕϕϕ(x)ΣΣΣ†(x)

)
,

(9)

where

ΣΣΣ(x) ≡ λ0I+
d∑
i=1

(ϕϕϕ(x− ei) +ϕϕϕ(x+ ei)) , (10)

and the corresponding pion mass is now given by (am)2 = λ0.

1.3 Two-Point Correlation Function

The functions

Φ(t) ≡
d−1∑
i=1

Li∑
xi=1

ϕ((x1, . . . , . . . , xd−1, t)) ,

c(δ) ≡
T∑
t=1

Φ(t) Φ(t+ δ)

(11)

can be defined (where T ≡ Ld), where Φ(t) corresponds to the t-th position in the 1-dimensional
array resulting from summing over all spatial coordinates, and c(δ) represents the correlation
between sites separated by a distance δ in the same (periodic) 1-dimensional array. c(δ) is called
the two-point correlation/Green’s function [6, 7], and is analogous to the probability amplitude
for propagation over a time δ.

The Klein-Gordon two-point correlation function follows from Equation 11. For a non-
periodic lattice, it is approximately proportional to e−amδ [8]. Naturally, for a periodic lattice,
it is then given by

c(δ) ∝ e−amδ + e−am (T−δ). (12)

For the non-linear sigma model, ϕ can be replaced by σ or πi, i = 1, 2, 3 to obtain the
two-point σ- or πi-correlation functions cσ(δ) or cπi(δ). The presence of the symmetry-breaking
term λ0 induces a preferred alignment of the field (similar to an external field in a statistical
mechanics system, e.g. a magnetic field in an Ising model), which in turn imposes a “minimum
correlation” between sites; in other words, the two-point correlation function is instead given
by

c(δ) ∝ e−amδ + e−am (T−δ) + k, (13)

for some constant k. As opposed to the Klein-Gordon action (Equation 3), the dimensionless
mass term am does not explicitly appear in the non-linear sigma model action (Equation 9),
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but rather implicitly through the inverse temperature β. By approximating the two-point
correlation function as

c(δ) ≈ k1e
−amδ + k2 (14)

for small δ, i.e. neglecting the contribution of the rising exponential term, the implicit mass am
can be approximated as (B)

am ≈ ln

c(0)− c(2)±
√

[c(0)− c(2)]2 − 4 [c(1)− c(2)] [c(0)− c(1)]

2 [c(1)− c(2)]

 . (15)

2 Observable Calculation

This project deals with the calculation of observables of a field theory via simulation over a
lattice. Before describing how one would go about simulating a statistical physics model, it is
first important to define some fundamental concepts.

2.1 Statistical Background

For identically distributed random variables A1, . . . , AN with mean µ ≡ E[Ai] and variance
ς ≡ Var(Ai), the sample mean µ̂ and sample variance ς̂ are defined as [9]

µ̂ ≡ 1

N

N∑
i=1

Ai,

ς̂ ≡ 1

N − 1

N∑
i=1

(Ai − µ̂)2 .

(16)

The sample mean is an unbiased estimator of the mean, i.e. E[µ̂] = µ (Lemma 1), and if the
random variables are independent, then the sample variance is an unbiased estimator of the
variance, i.e. E[ς̂] = ς (Lemma 3).

The mean squared error MSE(η̂) of an estimator η̂ of a random variable η is defined as

MSE(η̂) ≡ E
[
(η̂ − η)2

]
. (17)

If η̂ is an unbiased estimator, then MSE(η̂) = Var(η̂). For independent identically distributed
random variables A1, . . . , AN with mean µ and variance ς, then the corresponding mean squared
errors are given by (Lemma 2, [10])

MSE(µ̂) =
ς

N
,

MSE(ς̂) =
1

N

(
E
[
(Ai − µ)4

]
− ς2(N − 3)

N − 1

)
.

(18)

These have corresponding “näıve” estimators

M̂SEnäıve(µ̂) ≡
ς̂

N
,

M̂SEnäıve(ς̂) ≡
1

N

(
1

N

N∑
i=1

(Ai − µ̂)4 − ς̂2(N − 3)

N − 1

)
,

(19)

i.e. simply replacing µ and ς in Equation 18 with µ̂ and ς̂. As is discussed in 2.3, these are only
good estimators in the case of independent variables, and some adjustments need to be made
for dependent variables.
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2.2 Markov Chain Monte Carlo Methods

In short, Monte Carlo methods are numerical algorithms involving random sampling used to
calculate expected values. For identically distributed random variables A1, A2, . . . with mean
µ, then by the strong law of large numbers,

lim
N→∞

1

N

N∑
i=1

Ai = µ. (20)

Thus, for a large enough N , the mean µ can be approximated by the sample mean µ̂ (Equa-
tion 16).

A Markov chain is a sequence of “memoryless” states, i.e. states which are generated based
on the previous state alone. More formally, for a Markov chain of random variables A1, A2, . . .,
then

P{AN+1 = ai |AN = aj , AN−1 = ajN−1 , . . . , A0 = aj0} = P{AN+1 = ai |AN = aj}
= P{AM+1 = ai |AM = aj} ∀N,M.

(21)
For a probability density function λ(ξ) that is to be sampled from using a Markov chain, define
the transition probability density function

p(ξ, ν) ≡ P{AN+1 = ξ |AN = ν} (22)

and the infinitesimal volume element dΓξ in the phase space centred around state ξ. λ(ξ) and
p(ξ, ν) are probability density functions, and so

λ(ξ) ⩾ 0,

∫
dΓξ λ(ξ) = 1, p(ξ, ν) ⩾ 0,

∫
dΓξ p(ξ, ν) = 1. (23)

It is said that p(ξ, ν) satisfies detailed balance/time reversibility for λ(ξ) if

p(ξ, ν)λ(ν) = p(ν, ξ)λ(ξ)∀ ν, ξ, (24)

and if this is the case, then λ(ξ) is the equilibrium distribution of p(ξ, ν), i.e. choosing p(ξ, ν)
as the transition distribution leads to a Markov chain of values sampled from λ(ξ) (Lemma 4).

Markov chains of random variables sampled using Monte Carlo methods are called Markov
chain Monte Carlo (MCMC) methods. Typically when modelling a system, there exists a
function of the system parameters that is minimised for a likely arrangement of the system,
and maximised for an unlikely arrangement of the system; in the case of lattice field theories,
this function is the action S(ϕ) of the field ϕ. Expectation values of observables of the field are
given by

⟨A⟩ =
∫ ∏

x

dϕ(x)A(ϕ)
e−S(ϕ)

Z
, (25)

where Z is a normalising factor. This gives rise to a natural choice of probability distribution

λ(ϕ) =
e−S(ϕ)

Z
(26)

from which states of the system can be sampled using MCMC methods, and corresponding
observables can be approximated.

It is often the case where Equation 25 and Equation 26 are very difficult, or perhaps im-
possible, to solve analytically for complex systems. However, certain MCMC methods (such as
those used in this project, and outlined below) allow for sampling without explicitly calculating
these.
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2.2.1 Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm [11, 12] is perhaps the most well-known MCMC method to
this day. It operates using an “accept/reject” process, outlined as follows [13].

Say λ(ξ) is a probability density function from which values are to be sampled. Let the
proposal density function q(ξ, ν) be a distribution corresponding to proposing a state ξ given
the current state ν, and the acceptance probability α(ξ, ν) be the probability that this proposed
state is accepted as the next state, given by

α(ξ, ν) = min

(
q(ν, ξ)λ(ξ)

q(ξ, ν)λ(ν)
, 1

)
. (27)

These expressions satisfy

α(ξ, ν)q(ξ, ν)λ(ν) = α(ν, ξ)q(ν, ξ)λ(ξ), (28)

and so if the transition probability density function is defined as

p(ξ, ν) ≡ α(ξ, ν)q(ξ, ν), (29)

then p(ξ, ν) satisfies detailed balance for λ(ξ).
The Metropolis-Hastings algorithm can easily be used to simulate a field theory over a

lattice. For λ(ϕ) defined as in Equation 26, and the proposal density function chosen such that
q(ϕ′, ϕ) = q(ϕ, ϕ′) (e.g. symmetric distribution about the current state), then

α(ϕ′, ϕ) = min

(
q(ϕ′, ϕ)λ(ϕ′)

q(ϕ′, ϕ)λ(ϕ)
, 1

)
= min

(
e−∆S(ϕ′,ϕ), 1

)
, (30)

and so only the difference ∆S(ϕ′, ϕ) ≡ S(ϕ′) − S(ϕ) between the proposed and current action
is necessary to calculate for producing the next state. Notably, if the proposed state results in
a lower action, then it is always accepted.

In most cases, the proposed field ϕ′ differs to the current field ϕ at a single lattice site x, i.e.

ϕ′ = ϕ|ϕ(x)→ϕ′(x) , (31)

and the algorithm is repeated for each site in turn.
While any choice of q(ξ, ν) will eventually result in the Markov chain sampling from λ(ξ),

some intuition is still necessary; a good choice will result in proposed states being accepted
sufficiently frequently such that the algorithm samples from the whole distribution of states,
but also sufficiently infrequently such that likely states are sampled more often than less likely
states.

2.2.2 Gibbs Sampler

The Gibbs sampler method [14] is a type of Metropolis-Hastings algorithm, where the proposed
state is generated such that it is always accepted. In particular, the proposal density function
is given by [13]

q(ξ, ν) ∝ λ(ξ), (32)

and so

α(ξ, ν) = min

(
λ(ν)λ(ξ)

λ(ξ)λ(ν)
, 1

)
= 1. (33)

2.3 Autocorrelation

By definition, any data produced using MCMC methods is correlated. As a result, when calcu-
lating any observables of a simulated system, it is important that autocorrelation is accounted
for. Two notable consequences of autocorrelation are equilibrium convergence and effective
independence.
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2.3.1 Equilibrium Convergence

If the initial state of a system is chosen far away from its equilibrium state, then it may be the
case that a calculation of a sample mean of an observable includes a disproportionate number of
unlikely outliers. One simple remedy to this problem is to discard the first D states, and relabel
AD+1, . . . , AN as A1, . . . , AN−D for calculations. A good choice of D requires some intuition,
and can be found by noticing after how many iterations an observable sufficiently converges.

2.3.2 Effective Independence of Correlated Data

Equation 18 provides a notion of error in the calculation of the sample mean. However, this
expression is only applicable in the case of independent sampling, and not for data obtained
using MCMC methods. One method known as binning [15] can be implemented to approximate
the true mean squared error of correlated data.

For identically distributed random variables A1, . . . , AN with mean µ and variance ς, define
the sample mean µ̂ and sample variance ς̂ as in Equation 16. IntroducingM bins of size B = N

M

produces a series of binned variables A
(B)
1 , . . . , A

(B)
M , with

A
(B)
i ≡ 1

B

B∑
j=1

Aj+(i−1)B =
1

B

iB∑
j=(i−1)B+1

Aj . (34)

The corresponding binned sample variance estimator ς̂(B) and binned mean squared error esti-

mator M̂SE
(B)

bin (µ̂) are defined as

ς̂(B) ≡ 1

M − 1

M∑
i=1

(
A

(B)
i − µ̂

)2
,

M̂SE
(B)

bin (µ̂) ≡
ς̂(B)

M
.

(35)

Consider the case where the random variables are not independent, such as those generated in
a Markov chain. If B is chosen to be too small, then the binned sample variance ς̂(B) will not

be an unbiased estimator of the variance ς, and so the binned mean squared error M̂SE
(B)

bin (µ̂)
will not be an adequate estimator of the error. If B is chosen to be too large, then M will

not be sufficiently large enough for M̂SE
(B)

bin (µ̂) to be a reliable estimator of the error. Thus a
suitable B must be chosen such that there is a sufficient number of weakly correlated binned
variables, i.e. that the binned mean squared error accurately represents the error of the sample

mean µ̂. This can be done by plotting M̂SE
(B)

bin (µ̂) against B and noticing where the plot starts
to level off, after it has increased from an underestimate (small B) and before it exhibits erratic
behaviour (large B).

Defining the integrated correlation time τµ̂ [16] introduces the notion of an effective number
of independent variables of a Markov chain, i.e. Neff,µ̂ ≡ N

τµ̂
. The integrated correlation time can

thus be thought of as the number of samples that need to be generated to effectively generate
one independent sample. Defining the “näıve” mean squared error estimator as in Equation 19

allows an estimator τ̂
(B)
µ̂ for the integrated correlation time to be defined as

τ̂
(B)
µ̂ ≡ M̂SE

(B)

bin (µ̂)

M̂SEnäıve(µ̂)
. (36)

A suitable choice of B that results in M̂SE
(B)

bin (µ̂) ≈ MSE(µ̂) will also result in τ̂
(B)
µ̂ ≈ τµ̂. The

integrated correlation time depends on both the observable being estimated and the sampling
algorithm used.
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2.4 Error Calculation

Equation 19 are sufficient estimators of the mean squared error of the sample mean/sample
variance of independent identically distributed random variables. In the case of correlated
random variables, the discarding and binning methods outlined in 2.3 can be used to obtain
weakly correlated random variables, for which Equation 19 are again sufficient.

Now consider the case where a function f(µ) dependent on the mean µ of independent
identically distributed random variables A1, . . . , AN is to be estimated. The estimator

f̂ ′ ≡ 1

N

N∑
i=1

f(Ai) (37)

does not converge to f(µ) for N → ∞ [17]; instead, a more suitable estimator of f(µ) is given
by

f̂ ≡ f(µ̂) . (38)

If N of these estimators f̂i were independently generated, Equation 16 could be employed to
estimate f(µ), with

Ai → f̂i, µ̂→ 1

N

N∑
i=1

f̂i. (39)

One method that achieves this is the jackknife approach [18, 19]. The jackknife estimator f̂jack
of f(µ), defined as

f̂jack ≡ 1

N

N∑
i=1

f̂i,

f̂i ≡ f(µ̂i) ,

µ̂i ≡
1

N − 1

N∑
k=1
k ̸=i

Ak,

(40)

serves as an estimator for f(µ) with corresponding mean squared error estimate [17]

M̂SE
(
f̂jack

)
=
N − 1

N

N∑
i=1

(
f̂i − f̂jack

)2
. (41)

If the random variables A1, . . . , AN are not independent, then a jackknife-binning hybrid
method can be incorporated, i.e.

f̂
(B)
jack ≡ 1

M

M∑
i=1

f̂
(B)
i ,

f̂
(B)
i ≡ f

(
µ̂
(B)
i

)
,

µ̂
(B)
i ≡ 1

M − 1

M∑
k=1
k ̸=i

A
(B)
k =

1

N −B

N∑
k=1

k/∈[(i−1)B+1,iB]

Ak,

M̂SE
(
f̂
(B)
jack

)
≡ M − 1

M

M∑
i=1

(
f̂
(B)
i − f̂

(B)
jack

)2
,

τ̂
f̂
(B)
jack

≡
M̂SE

(
f̂
(B)
jack

)
M̂SE

(
f̂
(1)
jack

) ,

(42)
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with M bins of size B = N
M . One notable difference between the sample mean binning method

(2.3.2) and the jackknife-binning method is that the jackknife estimator f̂
(B)
jack depends on the

choice of bin size B. However, a suitable choice of B that results in M̂SE
(
f̂
(B)
jack

)
≈ MSE

(
f̂jack

)
will result in τ̂

f̂
(B)
jack

= τ̂f̂jack ≈ τf̂jack as before, as well as f̂
(B)
jack = f̂jack ≈ f(µ). A suitable choice

of the bin size B for the sample mean binning of MSE(µ̂) will also be a suitable choice for the

jackknife-binning of MSE
(
f̂jack

)
; in other words, τf̂jack ⩽ τµ̂.

3 Results

3.1 Klein-Gordon Theory

The main purpose of simulating Klein-Gordon fields for this project was to establish a strong
foundation for field theory calculations before approaching the non-linear sigma model. This
was done by calculating the two-point correlation c(δ) (Equation 11) and

• ensuring calculated values matched the analytic theory,

• optimising programmes,

• comparing the autocorrelation and efficiency of the Metropolis-Hastings algorithm and
Gibbs sampler, and

• obtaining possible relationships between the integrated correlation time τĉ(δ) and system
parameters, i.e. size L1 × · · · ×Ld−1 × T , dimensionless grid spacing/mass parameter am.

The Klein-Gordon Metropolis-Hastings algorithm (for a given proposal density function
q(ϕ′, ϕ)) is outlined as follows (E):

1. Choose a lattice site x and calculate γ(x).

2. Generate a proposed value ϕ′(x) ∼ q(ϕ′, ϕ).

3. Calculate ψ(x) = ϕ(x)− κ2γ(x) and ψ′(x) = ϕ′(x)− κ2γ(x).

4. If |ψ′(x)| ⩽ |ψ(x)|, then set ϕ(x) = ϕ′(x). Otherwise, generate U ∼ U(0, 1) and set

ϕ(x) = ϕ′(x) if U < exp
[
− (ψ′(x))2−(ψ(x))2

2κ2

]
.

5. Repeat steps 1-4 for each lattice site.

The proposal density function was chosen to be the uniform distribution U(ϕ(x)− ε, ϕ(x) + ε),
with ε a free parameter.

The Klein-Gordon Gibbs sampler is outlined as follows (E):

1. Choose a lattice site x and calculate γ(x).

2. Generate a proposed value ϕ′(x) ∼ N
(
κ2γ(x), κ2

)
.

3. Set ϕ(x) = ϕ′(x).

4. Repeat steps 1-3 for each lattice site.

8



3.1.1 Analytic Comparison

The first step in the simulation of Klein-Gordon fields was to check that the calculated values of
the two-point correlation function using the Metropolis-Hastings algorithm and Gibbs sampler
matched the analytic values (Equation 12). The temporal direction of a lattice is arbitrary
(T ≡ Ld is purely conventional), and so the calculated correlations in each direction, i.e. cj(δ),
T = Lj , should be equivalent in theory.

The correlations cj(δ) were calculated using both algorithms for a variety of lattices, and
plotted against the corresponding analytic (normalised) correlation c(δ) (Figure 1).

The calculated two-point correlation in Figure 1 closely agrees with the analytic result.
The error in the correlations were found using the binning method. Examples of plots of

M̂SE
(B)

bin (ĉj(δ)) are given in Figure 2 and Figure 3, where the characteristic shape of an increase
from the näıve error (B too small), to a plateau (suitable B), to erratic behaviour (B too large)
can be seen.

3.1.2 Optimisation

Before beginning an in-depth calculation of observables, autocorrelation times, and relationships
between system parameters, it was important to first find the optimal approach to incorporating
the MCMC algorithms used in this project. This was done by comparing two approaches to
writing functions to execute an algorithm for an arbitrary lattice:

1. Creating separate functions for lattices of different dimensions, and so knowing exactly
how to navigate the lattice and obtain nearest neighbours.

2. Having a single function for lattices of any shape, and thus needing to calculate how to
navigate a lattice and where nearest neighbours are for an arbitrary lattice.

Each method has its own advantages and disadvantages; implementing the first method would be
straightforward yet time-consuming, and the second method would not need any modifications
once implemented but would initially be more difficult to develop.

Both methods were written in Python and C++ for the Metropolis-Hastings algorithm and
Gibbs sampler, and the time for each of these methods to perform N iterations was calculated
for a range of N (Figure 4).

The significant difference between the runtimes of the Python and C++ programmes was
expected, however the difference in method speed was much more negligible for C++ than for
Python. For both Python and C++, the time to run the Metropolis-Hastings algorithm and
Gibbs sampler for the same lattice were virtually identical. Thus, comparing the two algorithms
only involved calculating mean squared errors and integrated autocorrelation times.

3.1.3 Algorithm Comparison

The two-point correlation c(δ) was calculated for a 16 × 16 lattice with am = 100.5 using
the Metropolis-Hastings algorithm (for a variety of values of ε) and Gibbs sampler for N =
221 iterations (Figure 5). The corresponding mean squared error MSE(ĉ(δ)) and integrated
correlation time τĉ(δ) were also estimated and compared between algorithms (Figure 6).

From Figure 5, the calculated correlations match the analytic values regardless of algorithm
or choice of ε, as expected. Figure 6 shows that both the mean squared error and integrated
correlation time for the Gibbs sampler were far lower than for the Metropolis-Hastings algorithm
for a variety of values of ε. It also shows that the value of ε that reduces error and autocorrelation
lies somewhere in the range (1, 3.2). This is further amplified in Figure 7, where the average
integrated correlation time for the Metropolis-Hastings algorithm is plotted against ε.
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Figure 1: Plots of (normalised) ĉj(δ) and c(δ) against δ for 16 × 16, am = 0.1, for both the
Metropolis-Hastings algorithm and Gibbs sampler. The top and bottom rows show the plots
on a linear and logarithmic scale, and the left and right columns correspond to c1,2(δ).
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Figure 2: Plots of M̂SE(ĉ1(0)) against B for 16×16, am = 0.1, for both the Metropolis-Hastings
algorithm and Gibbs sampler.
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Thus in terms of reducing autocorrelation, the Gibbs sampler was much more efficient than
the Metropolis-Hastings algorithm. Although this has only been shown to be the case for this
specific set of parameters, an attempt to find a relationship for the optimal ε that reduces
correlation would require much time and calculation, with no guarantee that the Metropolis-
Hastings algorithm performs better in any circumstances. This, combined with the facts that
the Gibbs sampler does not require optimisation of an external parameter and that the two
algorithms take the same time to compute, was conclusive enough to determine that the Gibbs
sampler is the superior algorithm.

3.1.4 Parameter Relationships

To conclude the study of Klein-Gordon theory, the relationships between the Gibbs sampler
integrated correlation time τĉ(δ) of the correlation estimator ĉ(δ) and the lattice length L of an
L× L lattice (Figure 8) and mass parameter am (Figure 9) was studied.

As can be seen from Figure 8, the integrated correlation time for the correlation estimator
does not depend on the lattice length L, whereas from Figure 9 there is an approximate power
law relationship with the mass parameter am for am < 1, namely τĉ(δ) ∝ am−k with k =
1.99(17). Although this was only shown for a 2 × 2 lattice, a similar relationship should hold
for other lattice sizes due to the results in Figure 8.
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Figure 9: Estimate τ̂ĉ(δ) of the integrated correlation time for the two-point correlation estimator
against mass parameter am, for a 2× 2 lattice.

15



3.2 Non-Linear Sigma Model

The non-linear sigma model Gibbs sampler is outlined as follows (F):

1. Choose a lattice site x and calculate ΣΣΣ(x).

2. Generate A ∼ N
(
0, 12
)
, B ∼ Exp(1), and U ∼ U(0, 1), and set v0 = 1− A2+B

β
√

detΣΣΣ(x)
.

3. If 2U2 > v0 + 1, return to step 2.

4. Generate n1 ∼ U(−1, 1) and θ ∼ U(0, 2π), set n2 =
√

1− n21 cos θ and n3 =
√

1− n21 sin θ,
and set vi = ni

√
1− v20 for i = 1, 2, 3.

5. Calculate v = v0 + i
∑3

k=1 vkτk and set ϕϕϕ(x) = v · ΣΣΣ(x)√
detΣΣΣ(x)

.

6. Repeat steps 1-5 for each lattice site.

3.2.1 SU(2) Sampling

The non-linear sigma model Gibbs sampler involves sampling v ∈ SU(2) from the distribution
(F.1)

f(v) dv ∝
√
1− v20 e

ρv0δ
(
n2 − 1

)
dv0d

3n (43)

using an accept/reject step, where ρ ≡ β
√
detΣΣΣ. Figure 10 shows graphs of the distribution of

v0 for a variety of values of ρ, and Figure 11 plots the number of rejections per sample against
ρ.

From Figure 11, a larger value of ρ, and thus β, corresponds to fewer proposals needed for
sampling v, and therefore a faster runtime of calculations.

3.2.2 d = 2, 3 Comparison

The SU(2) non-linear sigma model was simulated for 10 × 20 and 10 × 10 × 20 lattices, with
β = 1, 2 and λ0 = 0, 0.1, 0.2, and the corresponding two-point correlations cσ(δ) and cπi(δ) were
estimated.

It was first important to check that each of the pion correlations cπi(δ) were equivalent for
each set of system parameters, and thus confirm that the associated masses amπi were equal.
This was done by plotting the three correlations and showing that they were equal within error
(Figure 12). As this was shown to be true, only the average correlation

cπ(δ) ≡
1

3

3∑
i=1

cπi(δ) (44)

and corresponding mass amπ were calculated for each system. The masses amσ, amπ were
estimated by using the jackknife method for the estimator (B)

âm = ln

 ĉ(0)− ĉ(2) +
√
[ĉ(0)− ĉ(2)]2 − 4 [ĉ(1)− ĉ(2)] [ĉ(0)− ĉ(1)]

2 [ĉ(1)− ĉ(2)]

 , (45)

as well as their corresponding integrated correlation times (Table 1, Table 2). As before, the
error for the two-point correlations and masses was calculated using the binning method (Fig-
ure 13, Figure 14).
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Figure 10: Distribution of v0 from Equation 43 for a variety of ρ values. In grey is a histogram
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β λ0 âmσ τ̂âmσ
min τ̂ĉσ(δ) âmπ τ̂âmπ

min τ̂ĉπ(δ) Rejection rate

1
0 0.9482(8) 1.29 2.02 0.9472(4) 1.25 1.94 0.3437
0.1 0.9671(11) 1.26 3.31 0.9542(6) 1.24 1.93 0.3341
0.2 1.0217(11) 1.24 3.57 0.9743(6) 1.26 1.96 0.2092

2
0 0.2321(9) 5.19 40.23 0.2322(5) 6.07 32.94 0.0729
0.1 0.8069(13) 2.06 10.30 0.4063(5) 2.43 11.18 0.0674
0.2 1.1003(13) 1.39 5.34 0.5365 1.88 6.16 0.0634

Table 1: Mass estimators âmσ,π and their corresponding integrated correlation times, the min-
imum integrated correlation time of the estimators ĉσ,π(δ), δ = 0, 1, 2 (i.e. the values involved
in the calculation of âm), and the average number of rejections per site for 10 × 20, β = 1, 2,
λ0 = 0, 0.1, 0.2.

β λ0 âmσ τ̂âmσ
min τ̂ĉσ(δ) âmπ τ̂âmπ

min τ̂ĉπ(δ) Rejection rate

1
0 0.2107(20) 14.5 275.58 0.2092(11) 12.6 247.02 0.1418
0.1 1.0741(13) 1.55 8.30 0.4380(6) 2.95 12.62 0.1243
0.2 1.3315(15) 1.31 4.70 0.5843(6) 2.19 7.01 0.1140

2
0 0.1532(26) 25.8 2040.95 0.1523(10) 10.6 2037.12 0.0393
0.1 1.5150(19) 1.4 10.58 0.3472(6) 3.71 20.21 0.0383
0.2 1.7790(22) 1.2 4.41 0.4844(6) 2.56 9.76 0.0373

Table 2: Mass estimators âmσ,π and their corresponding integrated correlation times, the mini-
mum integrated correlation time of the estimators ĉσ,π(δ), δ = 0, 1, 2 (i.e. the values involved in
the calculation of âm), and the average number of rejections per site for 10× 10× 20, β = 1, 2,
λ0 = 0, 0.1, 0.2.

18



20 23 26 29 212 215 218

B

0

100

200

300

400

M
SE

(B
)

bi
n(

c
(1

0)
10 × 10 × 20, = 1, = 0.1

(a) cσ(10)

20 23 26 29 212 215 218

B

0

2

4

6

8

10

12

14

M
SE

(B
)

bi
n(

c
(1

0)

10 × 10 × 20, = 1, = 0.1

(b) cπ(10)

Figure 13: Plots of M̂SE
(B)
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One notable result from Table 1 and Table 2 is that the mass parameters amσ and amπ are
roughly equal for λ0 = 0. It is also evident that the integrated correlation times for the mass
parameter estimators tend to be higher for λ0 = 0. Increasing β, λ0, or the lattice dimension
also results in a lower rejection rate per site update. Although the error in the pion mass
calculations is lower than in the sigma mass (due to the pion mass calculations involving three
times as many data points), the corresponding integrated correlation times of the pion mass
tend to be appreciably larger for λ0 ̸= 0. In each case, the integrated correlation time for the
mass parameters were less than that for the two-point correlation; the factor by which they
differed ranged from 1.6 to 192.2.

The remainder of the study of the non-linear sigma model focused mainly on the massive
pions that appear as a result of the explicit symmetry breaking of the system, i.e. λ0 ̸=
0. As there do not exist Goldstone bosons in two dimensions due to the Mermin-Wagner
theorem [20, 21], only 3-dimensional lattices were considered.

3.2.3 amσ and amπ

The non-linear sigma model was simulated for a variety of system parameters (10 × 10 × 20,
10 × 10 × 10, 13 × 13 × 13 lattice sizes, λ0 = 0.1, 0.2, 0.3, β ∈ [0.5, 3]). The mass parameters
amσ and amπ were calculated for each of these, and plotted against β (Figure 15).

As can be seen from Figure 15, the behaviour of each mass is similar across lattice sizes and
value of λ0; in particular, amσ has a λ0-dependent minimum with respect to β, whereas amπ

monotonically decreases as β increases. It is also clear that, for the same set of parameters,
amσ(β) > amπ(β).

3.2.4 (amπ)
2 and λ0

The pion mass (amπ)
2 was also plotted against β (Figure 16) for the same set of lattice param-

eters as before.
As is clear from Figure 16, the pion mass (amπ)

2 for each set of parameters asymptotes to
λ0 as β → ∞, i.e. as the temperature decreases to 0, indicating the bare mass of the pion.

3.2.5 σ → π + π Decay

It was also of interest to find the conditions under which a theoretical σ → π + π decay was
possible, i.e. where amσ ⩾ 2amπ, and so the difference in the masses amσ − 2amπ was plotted
against β for the same lattice sizes and values of λ0 (Figure 17).

Figure 17 shows that the temperature at which a σ → π+π decay is possible is β ≈ 0.9325,
for any lattice size or λ0.

3.2.6 τâm and Rejection Rate

To conclude the study of the non-linear sigma model, the integrated correlation times τâmσ
,

τâmπ
and the average number of rejections per site update were calculated and plotted against

β (Figure 18, Figure 19) to obtain a measure of the efficiency of the Gibbs sampler.
Although the calculation of âmσ involves three times fewer data points than âmπ, the

corresponding integrated correlation time is appreciably lower across all parameters, as can be
seen in Figure 18. Similarly to Figure 11, the rejection rate in Figure 19 significantly decreases
as β increases, as expected. Figure 19 also shows that the rejection rate is much more dependent
on β than on λ0.
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Figure 15: Plots of âmσ and âmπ against β for λ = 0.1, 0.2, 0.3 and various 3-dimensional
lattices.
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Figure 16: Plots of (âmπ)
2 against β for λ = 0.1, 0.2, 0.3 and various 3-dimensional lattices.

The dashed lines represent the asymptotic behaviour (amπ)
2 → λ0 as β → ∞.
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Figure 17: Plots of âmσ−2âmπ against β for λ = 0.1, 0.2, 0.3 and various 3-dimensional lattices.
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Figure 18: Plots of τ̂âmσ
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against β for λ = 0.1, 0.2, 0.3 and various 3-dimensional
lattices.
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Figure 19: Plots of average rejections per site update against β for λ = 0.1, 0.2, 0.3 and various
3-dimensional lattices.
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Conclusion & Further Work

Many areas of this project could have been expanded if time permitted. The conclusion of
the Gibbs sampler being preferable to the Metropolis-Hastings algorithm in 3.1.3 would be far
more concrete if a relationship between the optimal choice of ε and the system parameters was
established and subsequently compared to the Gibbs sampler for a variety of systems. Original
aims of this project that unfortunately did not get addressed included mapping the phase shift
for scattering for a range of pion momenta using the Luescher method [22], and studying the
decay of a heavy scalar boson coupled to the pion fields.

Much of the time and calculations involved in this project were spent on Klein-Gordon theory:
optimising programmes, increasing accuracies, and relating algorithm efficiency and system pa-
rameters. While a more in-depth investigation of the non-linear sigma model would be more in
line with the title of this project, the study of the more straightforward Klein-Gordon theory
provided some useful information about the algorithms and approaches to numerical lattice field
theory calculation, and was necessary to develop a general and optimised structure.
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Appendices

A Lattice Field Theories

A.1 Klein-Gordon Lattice Action

The Klein-Gordon action in d-dimensional Euclidean space for a boson of mass m is given
by [1, 2]

S(ϕ) =
1

2

∫
ddxϕ(x)

(
−□+m2

)
ϕ(x). (1)

Applying the lattice parameterisation (Equation 2) results in the transformations [23]∫
ddx→ ad

∑
n

, □ϕ(x) → 1

a2

d∑
i=1

[ϕ(an+ a ei) + ϕ(an− a ei)− 2ϕ(an)] ,

=⇒ S(ϕ) → ad

2

∑
n

{
m2ϕ2(an) +

2d

a2
ϕ2(an)− ϕ(an)

a2

d∑
i=1

[ϕ(an+ a ei) + ϕ(an− a ei)]

}

=
∑
n

[
a

d
2
−1ϕ(an)

]{[(am)2 + 2d
]

2
a

d
2
−1ϕ(an)−

d∑
i=1

a
d
2
−1ϕ(an+ a ei)

}
.

The action S in Equation 1 must be dimensionless. Therefore the quantity ddxm2ϕ2(x) must be

dimensionless, and so ϕ(x) must have dimension [l]−
d
2 [m]−1 = [m]

d
2
−1. As a

d
2
−1 has dimension

[l]
d
2
−1 = [m]1−

d
2 , a

d
2
−1ϕ(x) is dimensionless. Relabelling

a ei → ei, a n→ x ≡
d∑
i=1

xiei, a
d
2
−1ϕ(x) → ϕ(x)

gives

S(ϕ) =
∑
x

ϕ(x)

(
2d+ (am)2

2
ϕ(x)−

d∑
i=1

ϕ(x+ ei)

)
. (3)

A.2 Non-Linear Sigma Model Symmetry Breaking

The non-linear sigma model action is given by

S(ϕϕϕ) =
β

2

∫
ddx Tr

[
∂µϕϕϕ

†(x)∂µϕϕϕ(x)− λ0ϕϕϕ(x)
]
. (6)

Consider the transformation ϕϕϕ(x) → ULϕϕϕ(x)U
†
R, where UL, UR ∈ SU(2). Then

S(ϕϕϕ) → β

2

∫
ddx Tr

[
UR

(
∂µϕϕϕ

†(x)
)
U †
LUL (∂

µϕϕϕ(x))U †
R − λ0ULϕϕϕ(x)U

†
R

]
=
β

2

∫
ddx Tr

[
∂µϕϕϕ

†(x)∂µϕϕϕ(x)− λ0ϕϕϕ(x)U
†
RUL

]
.

If λ0 = 0 then the action is invariant under this transformation, i.e. an SU(2)L×SU(2)R chiral
symmetry. If λ0 ̸= 0 then the action is invariant if UL = UR, i.e. an SU(2) isospin symmetry.
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The breaking of this chiral symmetry corresponds to the appearance of three massive pion
fields. Writing ϕϕϕ(x) = σ(x)I+ i

∑3
k=1 πk(x)τk gives

S =
β

2

∫
dx Tr

∂µ(σ(x)I− i

3∑
k=1

πk(x)τk

)
∂µ

σ(x)I+ i

3∑
j=1

πj(x)τj


− λ0

(
σ(x)I+ i

3∑
k=1

πk(x)τk

)]

= β

∫
dx

[
∂µσ(x)∂

µσ(x) +
3∑

k=1

∂µπk∂
µπk − λ0σ(x)

]
(Tr τk = 0, Tr(τjτk = 2δ) = 2δjk, Tr I = 2)

≈ β

∫
dx

[
λ0
2

3∑
k=1

πkπk + . . .

]
, (σ(x) =

√
1−

∑3
k=1 πkπk ≈ 1− 1

2

∑2
k=1 πkπk)

and so the mass of each pion field is given by m2
π = βλ.

A.3 Non-Linear Sigma Model Lattice Action

The non-linear sigma model action is given by

S(ϕϕϕ) =
β

2

∫
ddx Tr

[
∂µϕϕϕ

†(x)∂µϕϕϕ(x)− λ0ϕϕϕ(x)
]
. (6)

= −β
2

∫
dx Tr

{
ϕϕϕ(x)

[
∂µ∂

µϕϕϕ†(x) + λ0I
]}

. (integrating by parts)

Under the lattice parameterisation (Equation 2), this trnasforms into

S(ϕϕϕ) → −β
2
ad
∑
n

Tr

{
ϕϕϕ(an)

[
1

a2

d∑
i=1

(
ϕϕϕ†(an+ a ei) +ϕϕϕ†(an− a ei)− 2ϕϕϕ†(an)

)
+ λ0I

]}

≃ −a
−1β

2

∑
n

Tr

{
a

d−1
2 ϕϕϕ(an)

[
a

d−1
2

d∑
i=1

(
ϕϕϕ†(an+ a ei) +ϕϕϕ†(an− a ei)

)
+ a

d+3
2 λ0I

]}
,

up to a constant term. Thus relabelling

β

a
→ β, a

d+3
2 λ0 → λ0, a

d−1
2 ϕϕϕ(an) → ϕϕϕ(x)

gives

S(ϕϕϕ) = −β
2

∑
x

Tr

[
ϕϕϕ(x)

(
λ0I+

d∑
i=1

ϕϕϕ†(x+ ei)

)]
. (9)

Straightforward dimension analysis (similar to what is done in A.1) shows that each of the
relabelled values are dimensionless, as required.
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B Two-point Correlation Function

For small δ, the non-linear sigma model two-point correlation function can be approximated as

c(δ) ≈ k1e
−amδ + k2, (14)

i.e. an exponential decay with some constant scaling factor k1 > 0 and shifting factor k2 ⩾ 0.
This expression can be manipulated to give an expression for am only in terms of c(0), c(1),
and c(2) as follows:

c(0) ≈ k1 + k2 =⇒ c(δ) ≈ k1e
−amδ + c(0)− k1

=⇒ c(δ)− c(0) ≈ k1

(
e−amδ − 1

)
=⇒ c(2)− c(0)

c(1)− c(0)
≈ e−2am − 1

e−am − 1

=⇒ [c(2)− c(0)]
(
eam − e2am

)
≈ [c(1)− c(0)]

(
1− e2am

)
=⇒ e2am [c(1)− c(2)]− eam [c(0)− c(2)] + [c(0)− c(1)] ≈ 0

=⇒ am ≈ ln

c(0)− c(2)±
√
[c(0)− c(2)]2 − 4 [c(1)− c(2)] [c(0)− c(1)]

2 [c(1)− c(2)]


(15)

By considering different combinations of k1, k2, and am, it can be shown that the ± in the
above expression should read + for k1 > 0, and − for k1 < 0. Thus an estimator âm for the
mass parameter am can be given by

âm = ln

 ĉ(0)− ĉ(2) +
√
[ĉ(0)− ĉ(2)]2 − 4 [ĉ(1)− ĉ(2)] [ĉ(0)− ĉ(1)]

2 [ĉ(1)− ĉ(2)]

 . (45)

As this estimator depends on the means ĉ(δ) of random variables c(δ), the corresponding mean
squared error MSE(âm) can be approximated using the jackknife method.

C Statistical Proofs

Lemma 1. For identically distributed random variables A1, . . . , AN with mean µ, the sample
mean µ̂ (Equation 16) is an unbiased estimator of µ.

Proof.

E[µ̂] = E

[
1

N

N∑
i=1

Ai

]

=
1

N

N∑
i=1

E[Ai]

=
Nµ

N
= µ.
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Lemma 2. For identically distributed random variables A1, . . . , AN with mean µ and variance
ς, the mean squared error MSE(µ̂) of the sample mean µ̂ is given by

MSE(µ̂) =
ς

N
. (18)

Proof.

MSE(µ̂) = E
[
(µ̂− µ)2

]
= Var(µ̂) (as E[µ̂] = µ)

= Var

(
1

N

N∑
i=1

Ai

)

=
1

N2

N∑
i=1

Var(Ai) (by independence)

=
Nς

N2

=
ς

N

Lemma 3. For independent identically distributed random variables A1, . . . , AN with mean µ
and variance ς ≡ Var(Ai), the sample variance ς̂ (Equation 16) is an unbiased estimator of ς.

Proof.

E[ς̂] = E

[
1

N − 1

N∑
i=1

(Ai − µ̂)

]

=
1

N − 1
E

[
N∑
i=1

(
A2
i + µ̂2 − 2µ̂Ai

)]

=
1

N − 1
E

[
N∑
i=1

A2
i +Nµ̂2 − 2Nµ̂

1

N

N∑
i=1

Ai

]

=
1

N − 1
E

[
N∑
i=1

A2
i +Nµ̂2 − 2Nµ̂2

]

=
1

N − 1

(
N∑
i=1

E
[
A2
i

]
−N E

[
µ̂2
])

=
N

N − 1

(
E
[
A2
i

]
− E

[
µ̂2
])

Var(Ai) = E
[
A2
i

]
− E[Ai]

2 Var(µ̂) = E
[
µ̂2
]
− E[µ̂]2

=⇒ E
[
A2
i

]
= Var(Ai) + E[Ai]

2 =⇒ E
[
µ̂2
]
= Var(µ̂) + E[µ̂]2

= ς + µ2 =
ς

N
+ µ2 (shown in Lemma 2)

=⇒ E[ς̂] =
N

N − 1

(
ς + µ2 − ς

N
− µ2

)
=

1

N − 1
(Nς − ς)

= ς.
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Lemma 4. For a Markov process with transition probability density function p(ξ, ν) satisfying
detailed balance for a probability density function λ(ξ) (Equation 24), λ(ξ) is the equilibrium
distribution of p(ξ, ν).

Proof. ∫
dΓν p(ξ, ν)λ(ν) =

∫
dΓν p(ν, ξ)λ(ξ)

= λ(ξ)

∫
dΓν p(ν, ξ)

= λ(ξ).

D Distribution Notation

In this project, the following notation is used for some common probability distributions.
The continuous uniform distribution U(a, b) has probability density function

fU (x) =

{
1
b−a , a ⩽ x ⩽ b

0 otherwise
,

and can be related to the standard uniform distribution U(0, 1) by

U(a, b) = a+ (b− a)U(0, 1).

The normal distribution N (µ, σ2) has probability density function

fN (x) =
1

σ
√
2π

exp

[
−1

2

(
x− µ

σ

)2
]
,

and can be related to the standard normal distribution N (0, 1) by

N (µ, σ) = µ+ σN (0, 1).

The exponential distribution Exp(λ) has probability density function

fExp(x) =

{
λ e−λx, x ⩾ 0
0 otherwise

.
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E Klein-Gordon Field Sampling

The Klein-Gordon action (Equation 3) can be split up into Sx(ϕ), the contribution to the
action of the field ϕ(x) at the site x, and Tx(ϕ) ≡ S(ϕ)− Sx(ϕ), the action to which x has no
contribution. In particular,

Sx(ϕ) ≡ ϕ(x)

(
ϕ(x)

2κ2
− γ(x)

)
=

(ϕ(x))2 − 2κ2γ(x)ϕ(x)

2κ2

=

(
ϕ(x)− κ2γ(x)

)2 − κ4(γ(x))2

2κ2

=
1

2

(
ϕ(x)− κ2γ(x)

κ

)2

− κ2(γ(x))2

2
.

This gives

λ(ϕ) ∝ e−S(ϕ) (26)

= e−Sx(ϕ)e−Tx(ϕ)

= exp

[
−1

2

(
ϕ(x)− κ2γ(x)

κ

)2
]
exp

[
κ2(γ(x))2

2
− Tx(ϕ)

]
.

For an algorithm that updates each site of the lattice in turn as in Equation 31, then only the
distribution

λx(ϕ) ∝ exp

[
−1

2

(
ϕ(x)− κ2γ(x)

κ

)2
]

(46)

needs to be considered at each step, as this is the only part of λ(ϕ) depending on ϕ(x).
For the Metropolis-Hastings algorithm, proposing a field differing at a single site x as in

Equation 31 results in

λ(ϕ′)

λ(ϕ)
=
λx(ϕ

′)

λx(ϕ)
= exp

[
−(ψ′(x))2 − (ψ(x))2

2κ2

]
, (47)

where ψ(x) ≡ ϕ(x) − κ2γ(x) and ψ′(x) ≡ ϕ′(x) − κ2γ(x). If a symmetric proposal density
function q(ϕ′, ϕ) = q(ϕ, ϕ′) is chosen, then by Equation 30, the new state is always accepted if
|ψ′(x)| ⩽ |ψ(x)|, and accepted with probability as in Equation 47 otherwise.

For the Gibbs sampler, updating a single lattice site as before, the proposal density function
q(ϕ′, ϕ) is given by Equation 46, and so each site is simply set to an element drawn from the
normal distribution N

(
κ2γ(x), κ2

)
.
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F Non-Linear Sigma Model Sampling

F.1 Sampling from f(u)

Consider the distribution [15]

f(u) du ∝ exp
[ρ
2
Tr
(
uΠ†

)]
du (48)

for some ρ ∈ R, Π ∈ SU(2), and where the Haar measure du for u ≡ {u0, u1, u2, u3} ∈ SU(2)
(Equation 7) is given in terms of the Euclidean metric d4u as

du ∝ d4u δ
(
u20 + ukuk − 1

)
.

By the invariance of the Haar measure, this can be written as

f(v) dv ∝ exp
[ρ
2
Tr v

]
dv,

where v ≡ uΠ† ∈ SU(2). It is convenient to write this density in terms of the density functions
of each of vi. The probability density for v0 is given by

f0(v0) =

∫
dw δ(w0 − v0)

∝
∫
d4w δ(w0 − v0) δ

(
w2
0 + wkwk − 1

)
=

∫
d3w δ

(
v20 + wkwk − 1

)
=

∫ 2π

0
dϕ

∫ 1

−1
d(cos θ)

∫ ∞

0
dr r2 δ

(
v20 + r2 − 1

)
∝
∫ ∞

0
dr r2 δ

(
v20 + r2 − 1

)
∝
√

1− v20.

This then gives

f(v) dv ∝
√

1− v20 e
ρv0δ

(
n2 − 1

)
dv0d

3n, (43)

where vi = ni
√

1− v20, i = 1, 2, 3. Using a change of variables y ≡ ρ(1− v0) leads to the density
function for y

fY (y) ∝
√
2− y

ρ

√
y e−y. (49)

By the rejection method [24], sampling from fY (y) can be achieved by generating Y from

gtrial(y) ∝
√
y e−y (50)

and U ∼ U(0, 1), and accepting Y if U ⩽

√
2− Y

ρ

2
. Sampling from gtrial(y) is equivalent to

generating A ∼ N
(
0, 12
)
and B ∼ Exp(1), and setting Y = A2 + B [25]. Once v0 is generated

via fY (y), then by Equation 43, v1, v2, v3 can be obtained by generating n1, n2, n3 uniformly
on the unit sphere. This can be done by generating n1 ∼ U(−1, 1) and θ ∼ U(0, 2π), setting
n2 =

√
1− n21 cos θ and n3 =

√
1− n21 sin θ, and letting vi = n1

√
1− v20. Finally, once v is

generated from f(v), u can be calculated from v = uΠ† ⇐⇒ u = vΠ.
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F.2 Proving ΣΣΣ(x)√
detΣΣΣ(x)

∈ SU(2)

Lemma 5. For a sum

Σ ≡
n∑
i=1

Ui

of elements Ui ∈ SU(2), then the quantity

Σ√
detΣ

is also an element of SU(2).

Proof. Clearly

det
Σ√
detΣ

=
detΣ(√
detΣ

)2 = 1,

and so it only remains to show that Σ√
detΣ

is unitary. Denote

Σ(n) =

n∑
i=1

Ui, Ui = u
(0)
i I+ i

3∑
j=1

u
(j)
i σj .

Consider n = 1. Then

Σ(1)Σ(1)† = U1U
†
1

= I

=⇒ Σ(1)

√
detΣ(1)

(
Σ(1)

√
detΣ(1)

)†

=
1

detΣ(1)
I

=
1

detU1
I

= I,

and so Σ(n)
√
detΣ(n)

is unitary for n = 1.

Now consider n = k + 1, assuming Σ(k)
√
detΣ(k)

is unitary.

Σ(k+1)Σ(k+1)† =

(
k+1∑
i=1

Ui

)k+1∑
j=1

Uj

†

=

(
Uk+1 +

k∑
i=1

Ui

)U †
k+1 +

k∑
j=1

U †
j


= Uk+1U

†
k+1 + Uk+1

k∑
i=1

U †
j +

k∑
i=1

UiU
†
k+1 + det

(
Σ(k)

)
I (51)

Uk+1U
†
k+1 =

3∑
j=0

u
(j)
k+1

2I (52)
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Uk+1

k∑
i=1

U †
i =

u(0)k+1I+ i
3∑
j=1

u
(j)
k+1σj

 k∑
i=1

(
u
(0)
i I− i

3∑
l=1

u
(l)
i σl

)

=
k∑
i=1

u(0)k+1u
(0)
i I+ i

3∑
j=1

(
u
(j)
k+1u

(0)
i − u

(0)
k+1u

(j)
i

)
σj +

3∑
j,l=1

u
(j)
k+1u

(l)
i σjσl


=

k∑
i=1

u(0)k+1u
(0)
i I+ i

3∑
j=1

(
u
(j)
k+1u

(0)
i − u

(0)
k+1u

(j)
i

)
σj

+
3∑

j,l=1

u
(j)
k+1u

(l)
i

(
δjlI+

3∑
m=1

iϵjlmσm

)

=
k∑
i=1

 3∑
j=0

u
(j)
k+1u

(j)
i I+ i

3∑
j=1

(
u
(j)
k+1u

(0)
i − u

(0)
k+1u

(j)
i

)
σj + i

3∑
j,l,m=1
j ̸=l

u
(l)
k+1u

(l)
i ϵjlmσm


(53)

Similarly,

k∑
i=1

UiU
†
k+1 =

k∑
i=1

 3∑
j=0

u
(j)
k+1u

(j)
i I− i

3∑
j=1

(
u
(j)
k+1u

(0)
i − u

(0)
k+1u

(j)
i

)
σj − i

3∑
j,l,m=1
j ̸=l

u
(l)
k+1u

(l)
i ϵjlmσm


(54)

(53), (54) =⇒ Uk+1

k∑
i=1

U †
j +

k∑
i=1

UiU
†
k+1 = 2

3∑
j=0

k∑
i=1

u
(j)
k+1u

(j)
i I (55)

det
(
Σ(k)

)
=

3∑
j=0

(
k∑
i=1

u
(j)
i

)2

(56)

Combining (51), (52), (55) and (56) gives

Σ(k+1)Σ(k+1)† =

3∑
j=0

u(j)k+1
2 + 2

k∑
i=1

u
(j)
k+1u

(j)
i +

(
k∑
i=1

u
(j)
i

)2
 I

=
3∑
j=0

u(j)k+1
2 + 2

k∑
i=1

u
(j)
k+1u

(j)
i +

k∑
i=1

u
(j)
i

2 +
k∑

i,l=1
i ̸=l

u
(j)
i u

(j)
l

 I

=

3∑
j=0

k+1∑
i=1

u
(j)
i

2 +

k+1∑
i,l=1
i ̸=l

u
(j)
i u

(j)
l

 I

=

3∑
j=0

(
k+1∑
i=1

u
(j)
i

)2

I

= det
(
Σ(k+1)

)
I =⇒ Σ(k+1)

√
detΣ(k+1)

(
Σ(k+1)

√
detΣ(k+1)

)†

= I.

Thus by induction, Σ√
detΣ

∈ SU(2).
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F.3 Relating f(u) to λ(ϕϕϕ)

As is done in E, the non-linear sigma model action (Equation 9) can be split up into Sx(ϕϕϕ) and
Tx ≡ S(ϕϕϕ)− Sx(ϕϕϕ) with

Sx(ϕϕϕ) ≡ −β
2
Tr
(
ϕϕϕ(x)ΣΣΣ†(x)

)
,

giving

λ(ϕϕϕ) ∝ e−S(ϕϕϕ) (26)

= exp

[
β

2
Tr
(
ϕϕϕ(x)ΣΣΣ†(x)

)]
e−Tx(ϕϕϕ).

Again, only the distribution

λx(ϕϕϕ) ∝ exp

[
β

2
Tr
(
ϕϕϕ(x)ΣΣΣ†(x)

)]
= exp

[
β
√
detΣΣΣ(x)

2
Tr

(
ϕϕϕ(x)

ΣΣΣ†(x)√
detΣΣΣ(x)

)]
(57)

needs to be considered for an algorithm updating each site in turn.
Comparing Equation 48 and Equation 57, generating ϕϕϕ′(x) from λx(ϕϕϕ

′) using the Gibbs

sampler is equivalent to generating u from f(u) with ρ = β
√
detΣΣΣ(x) ∈ R and Π = ΣΣΣ(x)√

detΣΣΣ(x)
∈

SU(2).
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