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Background
For a periodic lattice with grid spacing a and particle mass m, the two-
point correlation function is given by [1]

c(δ) ∼ e−amδ + e−am(T−δ). (1)

The dimensionless quantity am may be a parameter of the system
(e.g. Klein-Gordon field) or can be determined by fitting calculated two-
point correlations (e.g. non-linear sigma model).
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The binning method [2] can be used to find the uncertainty in calculated
observables of a system using Markov chain Monte Carlo algorithms.
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The integrated autocorrelation time [2] for an estimator µ̂

τµ̂ =
MSE(µ̂)

MSEnaïve(µ̂)
=

N

Neff,µ̂

is given by the ratio of the true and “naïve” errors (i.e. assuming indepen-
dent data), and gives rise to the notion of effective independence.

Klein-Gordon Theory
The action for Klein-Gordon theory on a lattice is given by [1]

S(ϕ) =
∑
x

ϕ(x)

(
2d+ (am)2

2
ϕ(x)−

d∑
i=1

ϕ(x+ ei)

)
.

The Metropolis-Hastings algorithm and Gibbs sampler [3] were used to cal-
culate two-point correlations for Klein-Gordon fields. The Gibbs sampler
was found to be preferable due to its significantly weaker autocorrelation
and the lack of an external parameter.
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The integrated autocorrelation time for the two-point correlation function
was found to be roughly independent of lattice size, and had an approxi-
mate power law relationship with am (τĉ(δ) ∝ am−2 for am < 1).
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Non-Linear Sigma Model
The action for the SU(2) non-linear sigma model on a lattice is given by [4]

S(ϕϕϕ) = −β

2

∑
x

Tr

[
ϕϕϕ(x)

(
λ0I+

d∑
i=1

ϕϕϕ†(x+ ei)

)]
,

ϕϕϕ = (σ,πππ) ∈ SU(2).

Two-point correlations were calculated for various β and λ0. amσ and amπ

were estimated using the jackknife method [2] for eq. (1).
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The behaviour of the σ and π masses were found to be notably different;
amσ has a λ0-dependent minimum at which its autocorrelation peaks,
whereas (amπ)

2 → λ0 and its autocorrelation is maximised for β → ∞.
The autocorrelation for the π masses was found to be generally stronger
than that for the σ masses, i.e. τâmσ

< τâmπ
. It was also discovered that

the mass autocorrelation was appreciably weaker than that for the two-
point correlation, i.e. τâm < τĉ(δ).
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Similar results were obtained for various lattice sizes.
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Conclusion
The study of Klein-Gordon theory in this project built a strong foundation
for simulating the non-linear sigma model. This was done by

• debugging code via numerical and analytic comparison,

• improving efficiency by comparing algorithms and programmes, and

• finding relationships between autocorrelation and parameters.

The non-linear sigma model was then investigated, where two-point cor-
relations were calculated and used to determine particle masses. The de-
pendance of these masses on the system parameters was determined, and
it was shown that the autocorrelation of an algorithm does not only de-
pend on the system and its parameters, but also on the observable being
calculated.


