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BACKGROUND

For a periodic lattice with grid spacing a and particle mass m, the two-
point correlation function is given by |[1]

C((S) N e—am5 4 e—am(T—5). (1>

The dimensionless quantity am may be a parameter of the system
(e.g. Klein-Gordon field) or can be determined by fitting calculated two-
point correlations (e.g. non-linear sigma model).
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The binning method |2| can be used to find the uncertainty in calculated
observables of a system using Markov chain Monte Carlo algorithms.
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The integrated autocorrelation time 2| for an estimator ji

MSE(j) N
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is given by the ratio of the true and “naive” errors (i.e. assuming indepen-
dent data), and gives rise to the notion of effective independence.

KLEIN-GORDON THEORY
The action for Klein-Gordon theory on a lattice is given by |1]
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The Metropolis-Hastings algorithm and Gibbs sampler [3| were used to cal-
culate two-point correlations for Klein-Gordon fields. The Gibbs sampler
was found to be preferable due to its significantly weaker autocorrelation
and the lack of an external parameter.
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The integrated autocorrelation time for the two-point correlation function
was found to be roughly independent of lattice size, and had an approxi-
mate power law relationship with am (T(g((g) o am™? for am < 1).
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NON-LINEAR SIGMA MODEL

The action for the SU(2) non-linear sigma model on a lattice is given by |4]

S(¢) = —ngr d(x) ()‘OH‘FZQST(X"‘@L)) ,

¢ = (o,

Two-point correlations were calculated for various 8 and A\g. am, and am
were estimated using the jackknife method 2] for eq. (1).
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The behaviour of the ¢ and m masses were found to be notably different;
am, has a Ag-dependent minimum at which its autocorrelation peaks,
whereas (am,)” — Ao and its autocorrelation is maximised for 3 — oo.
The autocorrelation for the m masses was found to be generally stronger
than that for the o masses, 1.e. 7477 < Tgm. . It was also discovered that
the mass autocorrelation was appreciably weaker than that for the two-
point correlation, i.e. Tgm < Ta(s)-
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Similar results were obtained for various lattice sizes.

CONCLUSION

The study of Klein-Gordon theory in this project built a strong foundation
for simulating the non-linear sigma model. This was done by

e debugging code via numerical and analytic comparison,
e improving efficiency by comparing algorithms and programmes, and
e finding relationships between autocorrelation and parameters.

The non-linear sigma model was then investigated, where two-point cor-
relations were calculated and used to determine particle masses. The de-
pendance of these masses on the system parameters was determined, and
it was shown that the autocorrelation of an algorithm does not only de-
pend on the system and its parameters, but also on the observable being
calculated.
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