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1 Abstract

In this experiment, the X-ray diffraction pattern of various crystal samples (NaCl (100),
LiF(100), GaP (111), Si (100), Si (111)) were recorded. Using the Bragg condition and diffrac-
tion order selection rules, these patterns were interpreted to determine the lattice constant
for each of the crystals. The calculated values for the lattice constant (556 ± 5 pm, 405 ± 2
pm, 537± 5 pm, 534± 11 pm) were found to agree with experimentally-verified values, within
experimental error.

2 Introduction

2.1 Crystal Structure

Crystalline materials consist of a highly ordered make-up of its constituents and are uniquely
determined by a lattice, an array of periodically repeating points in space, and a basis, a set
of atoms attributed to each lattice point. A lattice can be described by the vectors a1, a2 and
a3 by the expression

r′ = r+ u1a1 + u2a2 + u3a3, (1)

where the lattice at r is identical to that at r′, and u1, u2 and u3 are arbitrary integers. While
this experiment deals with crystals of different structure, each of these can be described by a
cubic lattice, i.e. a1 = a2 = a3 ≡ a, where a is the lattice constant of the crystal.

2.2 Miller Indices

When dealing with samples of crystals, specifically samples with a smoothly cut face, it is often
useful to denote which plane of the lattice the crystal has been cut. This is done using Miller
indices; for a given lattice plane that intersects the a1, a2 and a3 axes at (ua1, 0, 0), (0, va2, 0)
and (0, 0, wa3), respectively, the Miller indices (hkl) are given by the expression

h : k : l =
1

u
:
1

v
:
1

w
. (2)

A relationship between the lattice plane spacing d and the lattice constant a of a cubic crystal
can be derived. Consider the reciprocal vector r = hb1 + kb2 + lb3. The magnitude of this
vector is simply 1

d2
, and since b2

1 = b2
2 = b2

3 =
1
a2

, this reduces to

1

d2
=

h2 + k2 + l2

a2
=⇒ d =

a√
h2 + k2 + l2

. (3)

2.3 X-Ray Radiation

In X-ray production, electrons are accelerated through a high voltage towards a target, where
their collisions in the target produce two notable X-ray spectra: the characteristic spectrum
and the continuous spectrum.

When the accelerated electrons are in the vicinity of the target, a portion of their kinetic
energy may be absorbed by electrons in certain energy levels of the atoms in the target. These
electrons enter an excited energy level and, after returning back to their original energy level,
emit electromagnetic radiation. Specific energy transitions correspond to specific radiation
wavelength, giving rise to the characteristic X-ray spectrum. In this experiment, Kα and
Kβ radiation are produced, corresponding to the energy transitions L→K and M→K and
wavelengths 71.1 pm and 63.1 pm, respectively (as shown in Figure 1).
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M: n = 3

L: n = 2

K: n = 1

Kα Kβ

Figure 1: Energy transitions corresponding to Kα and Kβ radiation.

The continuous spectrum, on the other hand, is produced by the general deceleration of elec-
trons as it collides with the target. Since this is not associated with specific energy transitions,
this deceleration can produce X-rays across a continuous range of wavelengths, also known as
bremsstrahlung.

In this experiment, X-ray radiation is diffracted from a crystal into a detector. By varying
the angle of diffraction, a spectrum of intensities is produced due to Bragg’s Law, consisting
of both characteristic and continuous spectra components.

2.4 Bragg’s Law

When electromagnetic radiation is focused towards a crystal, it is scattered in a predictable
fashion; for a given radiation wavelength (similar to the atomic spacings, i.e. X-rays), certain
angles of incidence lead to constructive interference of the reflected waves. This is known as
Bragg’s Law, and is a foundation in X-ray crystallography. The so-called Bragg condition for
constructive interference is given by

nλ = 2d sin β, (4)

where n is the order of diffraction, λ is the wavelength of the incident radiation, d is the spacing
between the lattice planes of the crystal, and β is the angle of incidence of the radiation. This
expression can be derived from Figure 2, where in order for constructive interference to occur
between the reflected waves, the segments highlighted in blue, equalling a length of 2d sin β,
must be an integer number of wavelengths, nλ.

d

β

Figure 2: Diffraction of waves from planes of a crystal lattice.

For cubic crystals, Equation 3 and Equation 4 can be combined to result in

a =
nλ

√
h2 + k2 + l2

2d sin β
. (5)
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2.5 Selection Rules

While the characteristic spectrum obtained from X-ray diffraction must obey the Bragg con-
dition, not every diffraction order satisfying Equation 4 will result in a peak on the spectrum.
This is due to the specific make-up of the lattice and basis of the crystal.

For a given crystal A, the amplitude of a scattered wave is proportional to the structure
factor FA, given by [1]

FA =
∑
p

fp e
−2πi(hxp+kyp+lzp), (6)

where
∑

p denotes a sum over all basis atoms in the conventional unit cell, fp is the atomic
form factor of atom p, (xp, yp, zp) is the location of atom p in the unit cell, and (hkl) are the
miller indices of the crystal.

A face-centred cubic crystal made up of atoms of atomic form factor f can be considered as
a simple cubic lattice with a basis of atoms located at (0, 0, 0),

(
1
2
, 1
2
, 0
)
,
(
1
2
, 0, 1

2

)
and

(
0, 1

2
, 1
2

)
.

Equation 6 thus reads

FFCC,f = f
[
e−2πi(0+0+0) + e−2πi(h

2
+ k

2 ) + e−2πi(h
2
+ l

2) + e−2πi( k
2
+ l

2)
]

= f
[
1 + (−1)h+k + (−1)h+l + (−1)k+l

]
FFCC,f =

{
4f h, k, l are all even or all odd
0 h, k, l are of mixed parity

. (7)

A rock salt structure, such as that observed in NaCl and LiF, can be considered as a face-centred
cubic lattice with a basis of atom σ at (0, 0, 0) and atom ρ at

(
1
2
, 1
2
, 1
2

)
. Using Equation 7 results

in

Frock salt,fρ, fσ = FFCC,f |f→Ffρ,fσ

=

{
4
[
fσ e

−2πi(0+0+0) + fρ e
−2πi(h

2
+ k

2
+ l

2)
]

h, k, l are all even or all odd

0 h, k, l are of mixed parity

Frock salt,fρ, fσ =


4(fσ + fρ) h, k, l are all even
4(fσ − fρ) h, k, l are all odd
0 h, k, l are of mixed parity

. (8)

For a zincblende structure, such as GaP, a similar method as above can be used. Considering
instead the basis points of (0, 0, 0) and

(
1
4
, 1
4
, 1
4

)
leads to

Fzincblende,fσ , fρ =


4(fσ + fρ) h+ k + l = 4N

4(fσ ± ifρ) h+ k + l = 2N + 1

4(fσ − fρ) h+ k + l = 4N + 2

, (9)

where N is an arbitrary integer.
A diamond crystal structure is simply a zincblende structure with σ and ρ being identical

atoms, i.e. fσ = fρ ≡ f , and so

Fdiamond,f =


8f h+ k + l = 4N

4f(1± i) h+ k + l = 2N + 1

0 h+ k + l = 4N + 2

. (10)

While the Miller indices in the above expressions for the structure factor are given as (hkl),
for diffraction orders greater than 1 these are replaced with ((nh)(nk)(nl)). This gives rise to
a set of selection rules imposed on the diffraction order n for different crystal structures.
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3 Method

1. Initialise the X-ray diffraction apparatus using the following parameters:

• Tube voltage U = 35 kV

• Tube current I = 1 mA

• Measurement time interval ∆t = 1 s

• Step angle ∆β = 0.1°

• Angle limits βmin, βmax = 3°, 35°

• Detector mode: COUPLED

2. Mount the NaCl (100) crystal on the support and secure it in place.

3. Pressing the SCAN button on the apparatus and using the X-ray software on the supplied
PC, record the intensity spectrum for each of the four orientations of the crystal.

4. Identify the strongest intensity spectrum and record the diffraction pattern for the cor-
responding orientation, setting ∆t = 5 s.

5. Using the selection rules discussed in subsection 2.5, determine the diffraction order n
for each of the Kα and Kβ peaks.

6. Using Equation 5, calculate the lattice constant a of the crystal.

7. Repeat steps 1-6 for the LiF (100), GaP (111), Si (100) and Si (111) crystals.

4 Results & Discussion

4.1 NaCl

NaCl has a rock salt structure, and so from the selection rules in Equation 8, only even
diffraction orders, i.e. n = 2N , can be diffracted. After choosing the optimal orientation from
Figure 8, the following intensity spectrum, peak locations and lattice constant for NaCl (100)
were found:
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Figure 3: Intensity spectrum of NaCl (100) with ∆t = 5 s, the corresponding locations of the
Kα and Kβ lines, and the calculated lattice constant a for each peak.

The average value of a for NaCl was calculated to be 556± 5 pm, within experimental error
of the true value of 563 pm. [1]
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4.2 LiF

LiF also has a rock salt structure, and so again only even diffraction orders are considered.
After choosing the optimal orientation from Figure 9, the following intensity spectrum, peak
locations and lattice constant for LiF (100) were found:
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Figure 4: Intensity spectrum of LiF (100) with ∆t = 5 s, the corresponding locations of the
Kα and Kβ lines, and the calculated lattice constant a for each peak.

The average value of a for LiF was calculated to be 405± 2 pm, agreeing with the true value
of 403 pm. [2]

4.3 GaP

From Equation 9, the Bragg condition is the only restriction on X-ray diffraction, and so any
order peak can be observed. The spectra obtained in Figure 10 contained a significant amount
of noise, and so the spectra were recorded again with a longer time interval around the first Kα
peak using the provided Kα filter. After choosing the optimal orientation from Figure 11, the
following intensity spectrum, peak locations and lattice constant for GaP (111) were found:
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Figure 5: Intensity spectrum of GaP (111) with ∆t = 8 s, the corresponding locations of the
Kα and Kβ lines, and the calculated lattice constant a for each peak.

The average value of a for GaP was calculated to be 537± 5 pm, within experimental error
of the true value of 545 pm. [2,3]
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4.4 Si

From Equation 10, the only allowed diffraction orders for Si (100) are n = 1, 3, 4, 5, 7, 8, . . ..
The spectra obtained in Figure 12 were too noisy to choose an orientation, and so similarly as
was done with GaP, a more accurate spectra was obtained around the first Kα peak. After
choosing the optimal orientation from Figure 13 (and noting that the n = 1 diffraction was
amongst the peak of the bremsstrahlung and thus neglected), the following intensity spectrum,
peak locations and lattice constant for Si (100) were found:
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Figure 6: Intensity spectrum of Si (100) with ∆t = 7 s, the corresponding locations of the Kα
and Kβ lines, and the calculated lattice constant a for each peak.

From Equation 10, the only allowed diffraction orders for Si (111) are n = 1, 3, 4, 5, . . .. As
with Si (100), a second set of spectra were obtained after an initial noisy spectra in Figure 14.
After choosing the optimal orientation from Figure 15, the following intensity spectrum, peak
locations and lattice constant for Si (111) were found:
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Figure 7: Intensity spectrum of Si (111) with ∆t = 8 s, the corresponding locations of the Kα
and Kβ lines, and the calculated lattice constant a for each peak.

The average value of a for Si across both crystal samples was calculated to be 534± 11 pm,
agreeing with the true value of 543 pm. [3]
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5 Error Calculations

The uncertainty ∆λ in the wavelengths of the Mo Kα and Mo Kβ lines were taken to be 0.1
pm. The uncertainty ∆β in the angle β was taken to be the step angle, 0.1°.

The uncertainty ∆a in the lattice constants a was calculated using Gauss’s law of error
propagation

f = f(x, y) =⇒ ∆f =

√(
∂f

∂x
∆x

)2

+

(
∂f

∂y
∆y

)2

. (11)

Using Equation 5 and Equation 11, the uncertainty was calculated as follows:

a(λ, β) =
nλ

√
h2 + k2 + l2

2 sin β

∆a =

√(
∂a

∂λ
∆λ

)2

+

(
∂a

∂β
∆β

)2

=

√√√√(n
√
h2 + k2 + l2

2 sin β
∆λ

)2

+

(
−nλ

√
h2 + k2 + l2

2 sin2 β
cos β∆β

)2

=
n
√
h2 + k2 + l2

2 sin β

√
(∆λ)2 + (∆β · λ cot β)2

When finding the uncertainty in the average value ā of a over multiple peaks, the standard
deviation σ was taken as the uncertainty, namely

σ2 =
N∑
i=1

(ā− a)2

N
.

6 Conclusion

The calculated values of the lattice constants were found to agree with their experimentally-
verified values within experimental error. This confirmation further upholds both the Bragg
condition and the diffraction order selection rules for X-ray diffraction.

Possibly the largest source of unaccounted error was due to the precision of the cuts of the
provided crystal samples. While a slight difference in the cut would result in different Miller
indices, and thus differing values of the peaks in the diffraction spectra, it was not possible to
verify the precision of these cuts with the limited equipment and timeframe for this laboratory.
This possible source of error, however, did not prove to be an obstacle, as the largest percentage
error between the calculated and true value of a lattice constant was 1.7% (Si).
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Figure 8: Intensity spectra for the different orientations of NaCl (100), with ∆t = 1 s.
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Figure 9: Intensity spectra for the different orientations of LiF (100), with ∆t = 1 s.
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Figure 10: Intensity spectra for the different orientations of GaP (111), with ∆t = 1 s.
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Figure 11: Intensity spectra for the different orientations of GaP (111) using the Kα filter, with
∆t = 5 s.
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Figure 12: Intensity spectra for the different orientations of Si (100), with ∆t = 1 s.
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Figure 13: Intensity spectra for the different orientations of Si (100) using the Kα filter, with
∆t = 5 s.
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Figure 14: Intensity spectra for the different orientations of Si (111), with ∆t = 1 s.
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Figure 15: Intensity spectra for the different orientations of Si (111) using the Kα filter, with
∆t = 5 s.
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