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1 Abstract

In this laboratory, the fractal shape and dimension of an electrodeposition of zinc sulfate
was examined for varying molar concentration and applied voltage of a solution zinc sulfate
monohydrate in deionised water. A correlation between fractal shape and combination of
concentration and voltage was found by plotting a concentration-voltage phase diagram, and
analysing the shapes of the different growths. A relationship between the fractal dimension
of a growth and the molar concentration of the solution was identified, but the same was not
true for fractal dimension and voltage. Finally, the reliability of different dimension calculating
algorithms was also tested.

2 Introduction

2.1 Fractal Properties

In 1975, Benoit Mandelbrot coined the term “fractal”.1 Throughout history, however, mathe-
maticians have discovered many different fractal patterns, such as the Weierstrass function,2
the Cantor set,3 or the Koch snowflake.4 Fractals have two main properties in common: self-
similarity and non-integer fractal dimension.

The concept of self-similarity, or scale-independence, is straightforward; a self-similar pattern
contains regions that are similar to or exactly the same as the entire pattern. Perhaps the most
basic self-similar pattern is a line; no matter what scale a line is viewed over, its shape remains
the same, i.e. given an image of a line, it is not possible to deduce what the scale of the image
is.

Fractal dimension, however, is not so trivial. Although there are many (not always equiv-
alent) ways to calculate the dimension of a fractal, it is typically used to describe a pattern’s
“irregularity and breakage”,1 or how detailed a pattern becomes once it is viewed over smaller
scales. Unlike topological dimension, fractal dimension need not always be an integer; for ex-
ample, the dimension of a line is 1, however the fractal dimension of the Cantor set, obtained
by removing segments from a line, is log 2

log 3
≈ 0.63.5 In this laboratory, two main methods of

calculating fractal dimension are employed: the mass dimension method and the box counting
method.

2.2 Mass Dimension Method

The mass dimension method employs a circle of varying radius centred at a given point. For a
given radius r, the number of points N of the fractal (i.e. the amount of “mass”) within a circle
of radius r is counted. By repeating this for a range of radii, the dependence of the number
of points on the radius of the circle N(r) can be obtained. The fractal dimension using this
method is defined as

dmass =
logN(r)

log r
. (1)

For example, consider a point P on a square of side length a full of points. For a given radius
r < a, the “mass” within a circle of radius r is proportional to r2, and thus the mass dimension
dmass is simply 2, the dimension of the plane. If a different shape was considered, however, the
calculated dimension would not simply be the dimension of the space it lies in.

2



2.3 Box Counting Method

The box counting method is the most intuitive of the two methods used in this laboratory. A
grid containing boxes of side length l is laid across the fractal, and the number of boxes N
containing any portion of the fractal is counted. By repeating this for a range of lengths, the
dependence of the number of boxes containing the fractal N(l) can be obtained. The fractal
dimension using this method is defined as

dbox =
logN(l)

log 1
l

. (2)

Consider the same example as before, i.e. a square of side length a full of points. For l =
a, a

2
, a
3
, a
4
, . . ., the number of boxes containing a point is N = 1, 4, 9, 16, . . ., and so N(l) is

proportional to the squared reciprocal of l, thus dbox = 2, as in the mass dimension method.
Like before, the same result would not necessarily occur for a different fractal.

2.4 Electrodeposition Fractals

In this laboratory, “perfect” or “real” fractals were not considered. Instead, the behaviour of
electrodeposits of zinc sulfate monohydrate (ZnSO4) was examined. When a solution of ZnSO4

is dissolved in deionised water over which a voltage is applied, crystals of zinc sulfate form in
the solution, forming fractal-like shapes. Changing the molar concentration and voltage has
an effect on the size, shape, and speed at which these clusters grow. This laboratory aimed to
identify any correlation between these properties.

For electrodeposition fractals, such as those that will be formed in this laboratory, there exist
four main shapes: diffusion-limited aggregation (DLA), dense radial, dendritic, and stringy.
Examples of these fractal shapes can be seen in Figure 1.

Figure 1: Different types of fractal shapes. (a) diffusion-limited aggregation, (b) dense radial,
(c) dendritic, (d) stringy.6
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3 Method

1. Dissolve an amount of zinc sulfate monohydrate (ZnSO4) in deionised water corresponding
to 1 molar solution (1 M).

2. Pour a portion of this solution into a sealed container, and dilute the remaining solution
to obtain a lower concentration solution.

3. Repeat step 2 until several solutions of varying concentrations have been obtained.

4. Place several drops of a solution between perspex plates in order to create a thin film.
With a zinc ring anode wedged between the plates and a graphite cathode placed through
a hole in the centre of the top plate, apply a voltage to the system, turning off the voltage
source once the zinc deposit is large enough, ensuring it does not touch the anode.

5. Place the perspex plate set-up underneath the provided CCD camera. Adjust the camera
and lightbox settings until a clear image of the growth can be taken. Take a photograph
of the growth and save it.

6. Using the ImageJ software, invert the colour scheme of the captured photograph so that
the growth is white and its surroundings black. If the image contains the ring anode,
crop the image accordingly. Record the centre position of the fractal, and save the image
as a .bmp file.

7. Using the Benoit software, calculate the fractal dimension of the growth using both the
mass dimension and box counting methods.

8. Repeat steps 4 - 7 for various concentration and voltage combinations.
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4 Results & Discussion

The following photographs of each growth were taken:

Figure 2: Photographs of zinc growth for varying molar concentration and voltage. From top
to bottom, the molar concentration (in M) for each row is 1.0 ± 0.1, 0.28 ± 0.05,
0.11 ± 0.02, 0.031 ± 0.008, and 0.010 ± 0.003. From left to right, the voltage (in V)
for each column is 5.0± 0.1, 10.0± 0.1, 15.0± 0.1, and 20.0± 0.1.
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The following fractal dimensions and fractal shape for each concentration and voltage com-
bination was obtained:

Concentration, M Voltage, V Mass dimension Box counting dimension Fractal shape

1.0± 0.1

5.0± 0.1 1.3± 0.6 1.23± 0.05 stringy/dendrite
10.0± 0.1 1.4± 0.5 1.29± 0.07 stringy
15.0± 0.1 1.3± 0.4 1.28± 0.03 stringy
20.0± 0.1 1.3± 0.5 1.352± 0.003 stringy

0.28± 0.05

5.0± 0.1 1.6± 0.3 1.57± 0.01 dendrite
10.0± 0.1 1.76± 0.09 1.73± 0.01 dendrite
15.0± 0.1 1.79± 0.07 1.707± 0.005 dendrite/stringy
20.0± 0.1 1.7± 0.2 1.618± 0.004 dendrite/stringy

0.11± 0.02

5.0± 0.1 1.7± 0.2 1.668± 0.007 dense radial
10.0± 0.1 1.90± 0.02 1.801± 0.005 dense radial/dendrite
15.0± 0.1 1.93± 0.03 1.83± 0.01 dendrite/dense radial
20.0± 0.1 2.04± 0.07 1.828± 0.006 dendrite

0.031± 0.008

5.0± 0.1 1.88± 0.05 1.84± 0.02 dense radial/DLA
10.0± 0.1 1.922± 0.008 1.870± 0.009 dense radial
15.0± 0.1 1.92± 0.02 1.847± 0.006 dense radial
20.0± 0.1 2.02± 0.06 1.834± 0.008 dense radial

0.010± 0.003

5.0± 0.1 1.9± 0.4 1.79± 0.04 DLA
10.0± 0.1 1.8± 0.2 1.80± 0.02 DLA
15.0± 0.1 2.0± 0.7 1.80± 0.05 DLA
20.0± 0.1 1.88± 0.02 1.81± 0.02 DLA/dense radial

Figure 3: The fractal dimension using each method and corresponding shape for each combi-
nation of molar concentration and voltage.

As can be seen from this data, the accuracy of the fractal dimension differs greatly based on
what method is used; the average uncertainty for the box counting dimension is 0.02, whereas
the same for the mass dimension is 0.2.

A possible reason for the large difference in uncertainty is the fact that the mass dimension
method has a physical upper bound to its algorithm; once the mass dimension algorithm reaches
a radius larger than the given fractal, the number of points within the circle does not increase,
and so the corresponding plot will no longer be linear. Attempting to make a linear fit to a
non-linear curve will result in a large uncertainty. This is clearly noticeable when comparing
the photographs of the growth; for fractals that take up most of the image, the maximum
allowable radius will reach the edge of the photograph, and so the corresponding uncertainty
will be quite low, i.e. 0.008 - 0.06 uncertainty for 0.031 ± 0.008 M. For fractals that take up
a small portion of the image, the maximum allowable radius will be quite small, and so the
corresponding uncertainty will be quite high, i.e. 0.4 - 0.6 uncertainty for 1.0 ± 0.1 M. The
only similar limitation of the box counting method is the resolution of the image, which thus
imposes a smallest mesh size of the method. This, however, is also a limitation of the mass
dimension method, as the accuracy of the circle used in each iteration directly depends on the
number of pixels available.

The box counting method used by the Benoit software, however, was not without its flaws.
A calibration test for the box counting method was performed on pictures of a straight line
in various orientations, a blank page, and a checkerboard pattern. Although the dimension
of a straight line in various orientations (1.04 ± 0.05, 1.00 ± 0.06, 1.05 ± 0.08) and of a line
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segment (0.87± 0.05) were as expected, the dimension of a blank page (1.01± 0.18) and of a
checkerboard pattern (1.79± 0.04) were not 0 and 2, respectively, as would be expected.

Another note to be made from Figure 3 is the correlation between molar concentration
and both fractal dimension and shape; a higher concentration corresponds to a lower fractal
dimension and a dendritic or stringy shape, whereas a lower concentration corresponds to a
higher fractal dimension and a DLA or dense radial shape. This correlation is more apparent
in the following graphs:
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Figure 4: Graphs showing correlation between molar concentration, voltage, fractal shape, and
fractal dimension. First graph: concentration-voltage phase space indicating fractal
shapes. Second graph: plot of fractal dimension against molar concentration. Third
graph: plot of fractal dimension vs voltage.
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It can be seen from the first graph that the fractal shapes are separated in the phase diagram
similarly to the graphs in Figure 5.

Figure 5: Phase diagrams experimentally obtained by Grier et al.6,7

It can also be seen from the second and third graphs in Figure 4 that the fractal dimension has
little to no dependence on voltage, yet there is a non-trivial dependence on molar concentration;
for each concentration the fractal dimension remains roughly constant as voltage varies, whereas
for each voltage it reaches a maximum at approximately 0.03 M.

The fractal dimensions used in the second and third graphs of Figure 4 were those calculated
using the box counting method, due to the relatively high uncertainty in the mass dimension
method. The mass dimension method is also comparably unreliable due to the fact the centre
of the fractal is an input, which can be another source of error. Below is a table of the fractal
dimensions calculated for 1.0± 0.1 M, for varying choice of centre point:

Voltage, V Centre point, (x, y) Dimension

5.0± 0.1
(313,240) 1.3± 0.4
(318,240) 1.3± 0.6
(320,240) 1.4± 0.8

10.0± 0.1
(290,159) 1.4± 0.4
(295,159) 1.4± 0.5
(270,199) 2.4± 0.7

15.0± 0.1
(313,232) 1.3± 0.3
(318,232) 1.3± 0.4
(267,231) 2± 1

20.0± 0.1
(300,235) 1.3± 0.5
(305,235) 1.3± 0.5
(305,234) 1.3± 0.5

Figure 6: The fractal dimension calculated using the mass dimension method using various
points as the centre of the fractal, for 1 M. For each voltage, the first point is a shift
of 5 pixels from the determined centre, the second point is the determined centre,
and the third point is the default centre, i.e. the centre of the image. The difference
in dimension using the default centre for 10.0 ± 0.1 V and 15.0 ± 0.1 V arises from
the fact that the centre of the image was not close to the determined centre.
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From the above data, it can be seen that the uncertainty in the fractal dimension varies in a
high proportion when the centre point is slightly changed. Given this, and the generally high
uncertainty in the mass dimension method, considering only the box counting dimension for
the graphs in Figure 4 was reasonable.

5 Error Calculations

The uncertainty in the voltage applied to the system was found to be 0.1 V due to the preci-
sion of the voltmeter. The uncertainties in the fractal dimension were taken as the standard
deviation calculated from the plots using the Benoit software. The uncertainties in the molar
concentration were calculated using Gauss’s law of error propagation

f = f(x, y) =⇒ ∆f =

√(
∂f

∂x
∆x

)2

+

(
∂f

∂y
∆y

)2

. (3)

For example, the solution after step 1 of the method corresponded to a mass M1 of 17.98±0.01
g of ZnSO4 dissolved in a volume V1 of 0.10±0.01 L of deionised water. Using the concentration
formula C = M

V
, the concentration can be calculated as

C1 =
M1

V1

∆C1 =

√(
∂C1

∂M1

∆M1

)2

+

(
∂C1

∂V1

∆V1

)2

=
17.98 g
0.10 L

=

√(
∆M1

V1

)2

+

(
−M1∆V1

V 2
1

)2

= 179.8 g/L =

√(
0.01 g
0.10 L

)2

+

(
17.98 g · 0.01 L

(0.10 L)2

)2

≈ 17.98 g/L

Given that the molecular mass of ZnSO4 is 179.45 u, 1 M corresponds to 179.45 g dissolved
in 1 L, and so the concentration is C1 ≈ 1.0 ± 0.1 M. After this was obtained, 0.025 ± 0.001
L of the solution was transferred to a sealed container for use in the experiment. Since the
concentration of the remaining solution C2 was unchanged, C2 = C1. The volume of the
remaining solution V2 was 0.075 ± 0.01; the uncertainty is the same as that of V1 due to the
relatively low uncertainty in the removed volume. The mass of zinc in the remaining solution
was found as

M2 = C2 V2 ∆M2 =

√(
∂M2

∂C2

∆C2

)2

+

(
∂M2

∂V2

∆V2

)2

= 179.8± 17.98 g/L · 0.075± 0.010 L =

√
(V2∆C2)

2 + (C2∆V2)
2

= 13.485 g =

√
(0.075 L · 17.98 g/L)2 + (179.8 g/L · 0.01 L)2

≈ 2.255 g

Thus the mass M2 of ZnSO4 remaining is 13.385 ± 2.255 g. Next, deionised water was added
until the volume V3 of the solution was 0.27 ± 0.01 L. The weight M3 of ZnSO4 remains
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unchanged, i.e. M3 = M2. The concentration C3 was found similarly to before as

C3 =
M3

V3

∆C3 =

√(
∆M3

V3

)2

+

(
−M3∆V3

V 2
3

)2

=
13.485 g
0.27 L

=

√(
2.255 g
0.27 L

)2

+

(
13.485 g · 0.01L

(0.27L)2

)2

= 49.9444 g/L = 8.5531 g/L

Dividing C3 by 179.45 g/L results in a molar solution of 0.28± 0.05 M. The remaining concen-
trations were calculated in a similar fashion.

6 Conclusion

As expected, varying the molar concentration and applied voltage of a solution of ZnSO4 in
water changed both the fractal dimension and shape of the resulting crystalline structure.
Although altering the voltage for a constant molar concentration did not seem to change
the fractal dimension much, the fractal dimension had a non-trivial dependence on molar
concentration at constant voltage. A graph similar to those in Figure 5 was produced in this
laboratory, and it was shown that the box counting method is more reliable than the mass
dimension method for calculating fractal dimension.
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