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1 Introduction

The aim of this laboratory was to investigate the effects of air resistance on motion of a particle,
and compare linear and quadratic resistances.

1.1 Motion in a Vacuum

For many cases, motion can be approximated to be in a vacuum, i.e. to have no air resistance.
Examples of such cases are motion of a very heavy mass, or motion under very weak air resistance.
In these cases, Newton’s 2nd Law

F = ma (1)

can be rewritten for projectile motion. Since there is no acceleration in the x direction, and the
only force acting on the particle is mg in the −y direction, the equations

dvx
dt

= 0 (2)

dvy
dt

= −g (3)

can be derived for projectile motion in a vacuum. By integrating with respect to time t, the
equations

vx = vx0 (4)
vy = vy0 − gt (5)

define the velocity of a particle in a vacuum, where x0 and y0 correspond to t = 0.

1.2 Motion Under Air Resistance

When the air resistance acting on a particle is non-negligible, the particle’s weight is not the
only force that can be considered to act on the particle. By using a Taylor Series to expand the
resistive force, realising that the resistive force only exists when the particle is not at rest, and
neglecting terms of order 3 and higher, the resistive force magnitude can be written1

f(v) = bv + cv2, (6)

where b and c are dependent on the medium through which the particle is travelling. Considering
this force, along with the particle’s weight, leads to a rewriting of equation 1 as

dvx
dt

= − b

m
vx −

c

m

√
v2x + v2y vx (7)

dvy
dt

= −g − b

m
vx −

c

m

√
v2x + v2y vy (8)

to describe the projectile motion of a particle in air. For small time increments ∆t, the changes
in velocity ∆v can be written as

∆vx = − b

m
vx∆t−

c

m

√
v2x + v2y vx∆t (9)

∆vy = −g∆t− b

m
vx∆t−

c

m

√
v2x + v2y vy∆t. (10)

1Taylor, 2005
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For negligible quadratic air resistance (i.e. bv� cv2), the acceleration in the y direction has
the numerical equation2

vy(t) =
mg

b

(
e−

bt
m − 1

)
. (11)

Taking the limit of this equation as t→∞ (or neglecting c and setting dvy
dt

= 0 in equation (6))
results in

VT = −mg
b
, (12)

an expression for the terminal velocity of a falling particle experiencing linear air resistance.
For a spherical particle travelling through air, equation (4) can be written in terms of the

particle’s diameter D and velocity v as

f(Dv) = BDv + C (Dv)2, (13)

with b = BD and c = C D, and B and C known to be 1.6× 10−4 N s m−1 and 0.25 N s2 m−4,
respectively.1

2 Methodology

2.1 Exercise 1: Comparison of Linear and Quadratic Air
Resistance

1. Functions were defined using equation (13) for total, linear and quadratic resistive force.

2. The ranges for which the linear and quadratic terms can be neglected were found using
the following code:

neg = 0.9
quadratic_neglection = []
linear_neglection = []
DV_list = np.linspace(0., 0.06, 100001)
for i in DV_list:

if i !=0:
if f_linear(i) / f(i) > neg:

quadratic_neglection.append(i)
if f_quadratic(i) / f(i) > neg:

linear_neglection.append(i)

Here, f, f_linear and f_quadratic are the functions defined in Step 1., and the linear
or quadratic term was deemed negligible if it was less than 10% of the total force.

3. The resistive force and the linear and quadratic contributions were plotted against diameter
times velocity Dv for various ranges, showing the ranges for which the linear and quadratic
terms are negligible.

4. Step 3. was repeated, showing the resistive force for various spherical objects travelling at
certain speeds.

2TCD School of Physics, 2021
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2.2 Exercise 2: Vertical Motion Under Air Resistance

1. The velocity of a spherical particle released from rest was plotted against time by creating
a loop that repeatedly iterated equation (10), for a given diameter D, density ρ, and time
increment ∆t.

2. The error between the numerical equation (10) and analytical equation (11) was plotted
against time.

3. Steps 2. and 3. were repeated for particles of various diameters.

4. The time for a spherical particle to fall 5 m was plotted against mass by repeatedly cal-
culating this time for a particle of a given diameter and density, and calculating the
corresponding mass.

2.3 Exercise 3: Projectile Motion Under Linear Air Resistance

1. Equations (9) and (10) were repeatedly iterated to calculate the velocity of a particle of a
given diameter and density over time, for a given launch angle and speed. The quadratic
term was neglected by setting c = 0.

2. The trajectory of this particle was plotted by multiplying each ∆vx and ∆vy by ∆t to find
the distance travelled during each time increment.

3. The angle at which the particle attained its maximum range was plotted as a function
of mass. This was achieved by calculating the range of a particle of a given mass for
various launch angles and finding the angle at which the maximum range was attained,
and repeating for a range of masses.

2.4 Exercise 4: Projectile Motion Under Quadratic Air
Resistance

1. Exercise 2 Steps 1. and 2. were repeated, setting b = 0 instead of c. This was carried out
for various diameters, launch angles and launch speeds, and the plots for linear, quadratic
and no air resistance were plotted on the same graph.

2. Exercise 2 Step 3. was repeated, considering the quadratic air resistance instead. Again,
the resulting plots were plotted on the same graph for comparison.
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3 Results

3.1 Exercise 1: Comparison of Linear and Quadratic Air
Resistance

The quadratic term was found to be negligible up to 7.08 × 10−5 m2 s−1, and the linear term
was found to be negligible for 5.76×10−3 m2 s−1 and larger. In between these, neither term was
small enough to be neglected. The following graphs of the resistive force were plotted for these
ranges.
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Figure 1: Graphs of the resistive force and its linear and quadratic contributions over ranges
where the linear, quadratic or no term can be neglected.

5



The resistive force was also plotted for a baseball of diameter 7 cm travelling at 5 m s−1, a drop
of oil of diameter 1.5 × 10−6 m travelling at 5 × 10−5 m s−1, and a raindrop of diameter 1 mm
travelling at 1 m s−1.
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Figure 2: Graphs of the resistive force and its linear and quadratic contributions, showing the
force acting on a baseball, oil drop, and raindrop, respectively.

From these graphs, and also using the ranges for which each term is negligible, it is clear that
the linear term can be neglected for the baseball, the quadratic term can be neglected for the
oil drop, and neither term can be neglected for the raindrop.
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3.2 Exercise 2: Vertical Motion Under Air Resistance

For this exercise, the particle density ρ was kept as a constant 2 × 103 kg m−3. The following
data was obtained.

D 10−5 m 10−4 m
b 1.6× 10−9 kg s−1 1.6× 10−8 kg s−1

m 1.05× 10−12 kg 1.05× 10−9 kg
b

m
1528 s−1 15.28 s−1

c 2.5× 10−11 kg m−1 2.5× 10−9 kg m−1

VT 0.00642 m s−1 0.642 m s−1

bVT 1.03× 10−11 N 1.03× 10−8

cV 2
T 1.03× 10−15 N 1.03× 10−9 N

bVT
cV 2

T

1000 10

Figure 3: Data obtained for given density 2× 103 kg m−3 and two diameters.

From this, it can be seen that an increase in mass alone is equivalent to a decrease in the linear
coefficient b, and thus a decrease in the linear air resistance.
It can also be seen that, for small enough diameters (and thus small enough masses), the

quadratic air resistance can be neglected, as was shown in Exercise 1.
The following graphs of velocity against time, and the corresponding error between the ana-

lytical and numerical values, were plotted for these diameters.
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Figure 4: Plot of velocity of falling particle over time, alongside the error of the numerical results,
for masses 1.05 × 10−12 kg and 1.05 × 10−9 kg, corresponding to density 2 × 103 kg
m−3, and diameters 10−5 m and 10−4 m.
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These graphs are almost identical, with the main difference being the scaling of the axes. There
is a sharp spike in the difference between numerical and analytical values near the start of each
plot, which quickly asymptotes to 0 again. This is due to the fact that there is a relatively large
error early on, but once the particle is travelling at its terminal velocity, there would be very
negligible error between the numerical and analytical velocity.
The following graph of time to fall 5 m against mass was obtained.
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No air resistance: 10

g  s
Linear air resistance

Figure 5: Plot of time for a spherical particle of density 2× 103 kg m−3 to fall 5 m, as a function
of mass. Note the logarithmic scale on both axes.

It can be seen from this graph that very small masses take a long time to fall to the ground.
This is due to the fact that small masses reach their small terminal velocity very quickly (as
shown in Figure 4), and so travel at this low speed for most of their fall.
This graph also shows that, as mass increases, the time to fall 5 m asymptotes to approximately

1 s. This is because, for a large enough mass, the linear air resistance is negligible, and so the
time to fall 5 m is very similar to that in a vacuum. From the distance equation s = ut+ 1

2
at2,

it can be found that the time for a particle to fall 5 m in a vacuum is
√

10
g
s, or approximately

1 s.

8



3.3 Exercise 3: Projectile Motion Under Linear Air Resistance

The following trajectory for ρ = 2×103 kg m−3 and D = 10−4 m, launch angle θ = π
4
and initial

speed u = 1 m s−1 under linear and no air resistance was obtained.
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Figure 6: Plot of trajectory of spherical particle of density 2× 103 kg m−3 and diameter 10−4 m.

The large difference in the linear air resistance trajectory and vacuum trajectory arises due to
the small size of the mass, and shows that air resistance cannot always be neglected.
The following graph of optimum launch angle against mass was plotted, for u = 1 m s−1.
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Figure 7: Plot of optimum launch angle against mass. Note the logarithmic x axis.

For very small masses, the optimum angle is very close to horizontal. This is because the ratio
b
m

is much higher, and so there is a relatively strong force acting on the mass. The optimum
angle would thus be very low, so the mass is not slowed down as much by the resistive force.
The graph also shows that, as mass increases, the optimal launch angle asymptotes to approx-

imately π
4
rad. This is because, for a large enough mass, the linear air resistance is negligible,

and so the optimal launch angle is very similar to that in a vacuum, which is 45◦ = π
4
rad.
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3.4 Exercise 4: Projectile Motion Under Quadratic Air
Resistance

The following trajectories were obtained for u = 1 m s −1, diameters 10−4 m, 2 × 10−4m, 10−3

m, and 10−1 m, and launch angles π
8
rad, π

4
rad, and 3π

8
rad.
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Figure 8: Trajectories of particles of various launch angles and diameters.

It can easily be seen from these graphs that, as the mass of the particle is increased (but the
initial velocity is kept constant), the motion of the particle is similar to that in a vacuum, as
the trajectory gets closer to that in a vacuum.
For masses 1.05×10−9 kg and 8.38×10−9 kg, the trajectory is noticably shorter, as the linear

air resistance is stronger than the quadratic air resistance. This lines up with the discovery in
Exercises 1 and 2 that the quadratic term is negligible for very small masses.
It can also be seen from the trajectories for the 1.05 × 10−9 kg mass that, for linear air

resistance, a launch angle of π
4
rad does not correspond to a maximum range, as the range of

the particle is slightly larger for θ = π
8
than it is for θ = π

4
. This supports the graph of optimal

launch angle against mass in Figure 7.
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The following graphs of optimum launch angle against mass were plotted, for u = 1 m s−1.
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Figure 9: Plot of optimum launch angle against mass, for linear and quadratic air resistance.
Note the logarithmic x axes.

As the mass decreases, the optimum launch angle gradually decreases. As before, this is due to
the increase in relative force acting on the mass. This decrease is not as sharp as that for linear
air resistance, however. This is due to the fact that, for smaller masses, the linear air resistance
is much larger than the quadratic air resistance.
As with the linear air resistance, the optimal launch angle for quadratic air resistance asymp-

totes to π
4
rad as mass increases, due to the similarity to motion in a vacuum.

4 Conclusions

For most everyday cases, motion under air resistance is similar enough to motion in a vacuum,
and so air resistance can be neglected. When particles of smaller size or mass are considered,
however, air resistance can greatly affect motion.
If the air resistance force is considered to only have a linear and quadratic term, there are

different ranges for which each term can and cannot be neglected. The quadratic air resistance
can only be neglected for Dv < 7.08 × 10−5 m2 s−1, and the linear air resistance can only be
neglected for Dv > 5.76× 10−3 m2 s−1, where neglection is considered reasonable for values less
than 10% of the total force.
It was shown that a decrease in mass results in a much stronger relative force, and an increase

in mass leads to motion similar to that in a vacuum. By varying the mass, this was shown in
numerous ways, including investigating the force coefficients directly, calculating time to fall a
given height, and finding the launch angle at which a particle attains its maximum range.
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