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1 Introduction

The aim of this laboratory was to investigate the motion of a pendulum using two
different methods: the trapezoidal rule and the Runge-Kutta method.

1.1 Equation of Motion of a Pendulum

For a pendulum of length L, the arc length s travelled by the bob can be written in
terms of the angle subtended by the pendulum θ as

s = Lθ,

with θ measured in radians. Since L remains constant, the acceleration of the bob can
be written as

a ≡ d2s

dt2
= L

d2θ

dt2
.

The force acting on the bob of mass m is its weight

Fweight = mg.

Since the component of this force parallel to the pendulum is balanced by tension in the
pendulum, only the perpendicular component

Fweight,⊥ = mg sin θ

needs to be considered. If the pendulum experiences damping, a force proportional to

ω ≡ dθ

dt
must be considered, and is written

Fdamping = −b ω,

where b is the damping coefficient. A periodic driven force acting on the pendulum can
also be considered, and is written

Fdriven = F0 cos(φt),

where F0 is the amplitude of the driving force and φ is the frequency of the force. Using
Newton’s 2nd Law, assuming the mass is constant, leads to

ma =
∑

F

mL
d2θ

dt2
= −mg sin θ − b ω + F0 cos(φt)

f(θ, ω, t) ≡ d2θ

dt2
= − g

L
sin θ − k ω + A cos(φt), (1)

where k ≡ b

mL
and A ≡ F0

mL
. This is the most general form of the equation of motion

of a pendulum. One could approximate the motion linearly for small angles by replacing
sin θ with θ, or investigate undamped or undriven motion by setting k = 0 or A = 0
respectively.
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1.2 Trapezoidal Rule

Although there are not many methods to analytically solve ordinary differential equa-
tions, there are various numerical methods available. One such method is the trapezoidal
rule.1 This method relies on the geometry of the area under a curve, as well as the Taylor
series expansion. The following expressions

θn+1 = θn + ωn
∆t

2
+ (ωn + f(θn, ωn, t)∆t)

∆t

2
(2)

ωn+1 = ωn + f(θn, ωn, t)
∆t

2
+ f(θn+1, ωn + f(θn, ωn, t)∆t, t+ ∆t)

∆t

2
. (3)

can be derived using this method, where θn+1 ≡ θ(tn+1) and ωn+1 ≡ ω(tn+1) are cal-
culated iteratively, ∆t is the time step, and f is defined as in equation (1). As the
expressions for θn+1 and ωn+1 imply, this method is accurate up to 2nd order in time. To
use this method, initial conditions θ0, ω0, and t0 must be defined. This method was used
in Exercises 1, 2 and 3 to approximate the motion of an undamped, undriven pendulum.

1.3 Runge-Kutta Method

The Runge-Kutta methods1 are a group of methods used to numerically solve ordinary
differential equations. The trapezoidal rule is an example of one of these methods.
Another example is the fourth-order Runge-Kutta method (also simply called the Runge-
Kutta method) which, as the name implies, is accurate up to fourth order in time. The
following expressions are used for θn+1 and ωn+1:

k1a = ωn ∆t k3a =

(
ωn +

k2b
2

)
∆t

k1b = f(θn, ωn, t) ∆t k3b = f

(
θn +

k2a
2
, ωn +

k2b
2
, t+

∆t

2

)
∆t

k2a =

(
ωn +

k1b
2

)
∆t k4a = (ωn + k3b) ∆t

k2b = f

(
θn +

k1a
2
, ωn +

k1b
2
, t+

∆t

2

)
∆t k4b = f(θn + k3a, ωn + k3b, t+ ∆t) ∆t

θn+1 = θn +
1

6
(k1a + 2k2a + 2k3a + k4a) (4)

ωn+1 = ωn +
1

6
(k1b + 2k2b + 2k3b + k4b) (5)

The Runge-Kutta method was used in Exercises 3, 4 and 5 to approximate the motion
of various types of pendulums.

1Atkinson, 1989
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1.4 Phase Space

Once θ(t) and ω(t) are found, they can be plotted against each other to illustrate the
so-called phase space. One method of identifying if motion is periodic or not is by
investigating the phase portrait of the motion. If the motion is periodic, the phase
portrait will be a closed loop. For non-periodic motion, this loop will never become
closed. If the motion is driven but periodic, the phase portrait will only be closed once
the motion is no longer transient, but in its steady-state phase. In Exercise 5, the phase
portraits of the pendulum were plotted for different initial conditions.

2 Methodology

2.1 Exercise 1: Linear Pendulum

1. A function was defined using equation (1) for linear, undamped, undriven motion
by setting k and A to 0, and replacing sin θ with θ.

2. θ0, ω0, ∆t, the number of desired iteration steps, and the starting time t0 were
initialised.

3. To perform the trapezoidal rule, a for loop was made to iterate equations (2) and
(3) over the desired number of iteration steps, appending each θn+1 and ωn+1 to
separate lists. A list was also made for the corresponding time increments. This
was achieved using the following code:

theta_array = [theta]
omega_array = [omega]
t_array = [t]
for i in range(timesteps):

k1a = omega * dt
k1b = f(theta, omega, t) * dt
k2a = (omega + k1b) * dt
k2b = f(theta + k1a, omega + k1b, t + dt) * dt
theta += (k1a + k2a)/2
omega += (k1b + k2b )/2
t += dt
theta_array.append(theta)
omega_array.append(omega)
t_array.append(t)

Here, f is the function defined in Step 1., theta, omega and t are θ0, ω0 and
t0, respectively, and timesteps and dt are the desired number of iteration steps
and ∆t, respectively.

4. The lists obtained in Step 3. were plotted against each other to plot graphs of θ(t)
and ω(t).

5. Steps 2. - 4. were repeated for various values of θ0 and ω0.
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2.2 Exercise 2: Nonlinear Pendulum - Trapezoidal Rule

1. A function was defined as in Exercise 1 Step 1., without the replacement of sin θ.

2. Exercise 1 Step 5. was repeated for this function. The graphs obtained using each
function were plotted on the same graphs to compare differences.

2.3 Exercise 3: Nonlinear Pendulum - Runge-Kutta Method

1. The function in Exercise 2 Step 1. was again defined, and θ0, ω0, ∆t, the number
of desired iteration steps, and t0 were initialised.

2. To perform the Runge-Kutta method, a for loop was made to iterate equations
(4) and (5) over the desired number of iteration steps, appending each θn+1 and
ωn+1 to separate lists. A list was also made for the corresponding time increments.
This was achieved using the following code:
theta_array = [theta]
omega_array = [omega]
t_array = [t]
for i in range(timesteps):

k1a = omega * dt
k1b = f(theta, omega, t) * dt
k2a = (omega + k1b/2) * dt
k2b = f(theta + k1a/2, omega + k1b/2, t + dt/2) * dt
k3a = (omega + k2b/2) * dt
k3b = f(theta + k2a/2, omega + k2b/2, t + dt/2) * dt
k4a = (omega + k3b) * dt
k4b = f(theta + k3a, omega + k3b, t + dt) * dt
theta += (k1a + 2 * k2a + 2 * k3a + k4a)/6
omega += (k1b + 2 * k2b + 2 * k3b + k4b)/6
t += dt
theta_array.append(theta)
omega_array.append(omega)
t_array.append(t)

3. The graphs of θ(t) obtained using the trapezoidal rule and using the Runge-Kutta
method were plotted on the same graph to compare differences.

2.4 Exercise 4: Damped Pendulum

1. A function was defined using equation (1) for nonlinear, damped, undriven motion
by setting A to 0. θ0, ω0, ∆t, the number of desired iteration steps, t0, and k were
initialised.

2. The for loop used in Exercise 3 Step 2. to perform the Runge-Kutta method was
again used for this function, and θ(t) and ω(t) were plotted.
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2.5 Exercise 5: Damped, Driven Pendulum

1. A function was defined using equation (1) for nonlinear, damped, driven motion.
θ0, ω0, ∆t, the number of desired iteration steps, t0, and k were initialised.

2. The for loop used in Exercise 3 Step 2. was again used for this function to find
θ(t) and ω(t). Since θ and θ+2π correspond to the same position of the pendulum,
the following code was used to change any value of θ outside of the range [−π, π]:

for theta in theta_array:
if theta < -np.pi + a or theta > np.pi + a:

theta -= 2 * np.pi * np.abs(theta)/theta

Here, a is a parameter used to shift the allowed range to [−π + a, π + a].

3. Phase portraits for various values of A were created by plotting ω against θ.

3 Results

For convenience, the ratio
g

L
was set to 1 for each exercise.

3.1 Exercise 1: Linear Pendulum

The following graphs of θ(t) and ω(t) of the linear pendulum were plotted for various
values of θ0 and ω0:
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Figure 1: Graphs of θ(t) and ω(t) of the linear pendulum for various values of θ0 and ω0.
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3.2 Exercise 2: Nonlinear Pendulum - Trapezoidal Rule

The following graphs of θ(t) and ω(t) of the linear and nonlinear pendulum were plotted
for various values of θ0 and ω0:
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Figure 2: Graphs of θ(t) and ω(t) of the linear and nonlinear pendulum for various values
of θ0 and ω0.
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3.3 Exercise 3: Nonlinear Pendulum - Runge-Kutta Method

The following graph of θ(t) of the nonlinear pendulum was plotted using both the trape-
zoidal rule and Runge-Kutta method, for initial conditions θ0 = 3.14 and ω0 = 0.0:
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Figure 3: Graph of θ(t) of the nonlinear pendulum calculated using the trapezoidal rule
and Runge-Kutta method, for θ0 = 3.14 and ω0 = 0.0.

3.4 Exercise 4: Damped Pendulum

The following graphs of θ(t) and ω(t) of the damped pendulum were plotted for θ0 = 3.0
and ω0 = 0.0, with k = 0.5:
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Figure 4: Graphs of θ(t) and ω(t) of the damped pendulum for θ0 = 3.0 and ω0 = 0.0,
with k = 0.5.
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3.5 Exercise 5: Damped, Driven Pendulum

The following phase portraits were plotted for the damped, driven pendulum for various
values of A, with θ0 = 1.0, ω0 = 0.0, and time range 100-250 seconds:
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Figure 5: Phase portraits for the damped, driven pendulum for various values of A, with
θ0 = 1.0, ω0 = 0.0, and time range 100-250 seconds.
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4 Discussion

4.1 Linear vs Nonlinear Pendulum

The approximation of sin θ ≈ θ is equivalent to taking the first term of the Taylor series
expansion of sin θ, and is quite accurate for small values of θ. In Figure 2, the plots
of θ(t) and ω(t) of the linear and nonlinear pendulum disagree only slightly for small
values θ0 = 0.2, θ0 = 1.0 and ω0 = 1.0. For θ0 = 3.14, however, the graphs differ greatly.
The linear motion is completely sinusoidal, whereas the nonlinear motion suggests that
the pendulum pauses for θ ≈ ±π, and swings back quickly. The latter case is more
realistic, as the pendulum has an unstable equilibrium at θ = ±π, which means that
its kinetic energy would be near a minimum and its potential near a maximum, slowing
the pendulum down. This showcases the fact that the linear approximation is only
appropriate for small values of θ, as sin(3.14) ≈ 0.0016 � 3.14.

4.2 Trapezoidal Rule vs Runge-Kutta Method

It can be seen from Figure 3 that the trapezoidal rule and Runge-Kutta method give
largely different results, over a long enough time period. This is due to the order of time
up to which each method is accurate. The plot of θ(t) using the trapezoidal rule suggests
that, after approximately 40 seconds, the pendulum does not stop and swing back, but
rather continues swinging in one direction. The Runge-Kutta method, however, suggests
that the pendulum does indeed swing back and forth between −π and π. The latter is
clearly the more realistic scenario, which was expected due to the significant difference
in highest order of time used in each method.

4.3 Damped Pendulum

The plots of the damped pendulum motion were as expected, as the amplitude of both
θ and ω gradually decreased until there was very little motion (t ≈ 25 s). Again, this
highlights the accuracy of the Runge-Kutta method.

4.4 Periodic vs Chaotic Motion

Although the values of A do not vary greatly in Exercise 5, the resulting phase portraits
are all quite different. For A = 0.9, the portrait is a normally closed loop, which shows
that the motion is periodic with a constant period. This is similar for A = 1.35. Even
though the portrait does not seem to suggest periodic motion, the loop is indeed closed,
as it ‘wraps around’, corresponding to θ passing through ±π. However, for A = 1.07,
there seems to be two loops in the phase portrait. This is not the case, as the portrait
is still one closed loop. The motion is periodic, but in fact changes between two similar
periods. This is a similar case for A = 1.47, where the loop ‘wraps around’ as for
A = 1.35, and switches between 4 similar periods. The only outlier is the portrait for
A = 1.5, as this motion is completely chaotic. Nowhere in this portrait is there a closed

10



loop; the final point of the portrait can be seen at approximately θ = −0.5 rad and
ω = −2 rad s−1. If this portrait was illustrated for a longer time period, it would simply
fill up more of the phase space, never looping back on itself. This is a classic example of
the so-called butterfly effect,2 showcasing how sensitive systems can be with only a slight
change of parameters, as A = 1.47 and A = 1.5 lead to completely different motion.

5 Conclusions

After plotting θ(t) and ω(t) for different pendulums using different methods, it is clear
that not every approach to numerically solving differential equations yields the same
results. The linear approximation sin θ ≈ θ is only valid for small values of θ, as was
seen when θ > 1. Over a long time period, the trapezoidal rule also fails to be accurate for
large enough θ, as was seen when compared to the higher order Runge-Kutta method for
θ = 3.14. The high accuracy of the Runge-Kutta method was also shown when damped
motion was plotted.

It was also shown that basic systems can be very sensitive to initial conditions, where
a difference of 0.03 in the driving coefficient can switch the motion from periodic to
chaotic.

6 References & Appendix
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All code and figures used in this laboratory can be found here:
https://github.com/campioru/SF_Lab_2

2K. Lorenz, 1972
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