
Senior Fresh Computational Physics Laboratory Report

Laboratory 1: Finding minima of functions

Ruaidhrí Campion
SF Theoretical Physics

19333850

3rd March 2021

Contents

1 Introduction 2
1.1 The Bisection Method . 2
1.2 The Newton-Raphson Method . 2

2 Methodology 3
2.1 Exercise 1: Finding Roots of a Parabolic Function - Bisection Method . . 3
2.2 Exercise 2: Finding Roots of a Parabolic Function - Newton-Raphson

Method . 4
2.3 Exercise 3: Finding Minima Roots of a Potential Energy Function 5

3 Results 6
3.1 Exercise 1: Finding Roots of a Parabolic Function - Bisection Method . . 6
3.2 Exercise 2: Finding Roots of a Parabolic Function - Newton-Raphson

Method . 8
3.3 Exercise 3: Finding Minima Roots of a Potential Energy Function 10

4 Discussion 11
4.1 Precision of Approximate Roots . 11
4.2 Bisection Method vs Newton-Raphson Method Efficiency 11
4.3 Conditions on Initial Points . 12

5 Conclusions 12

6 References & Appendix 12

1

1 Introduction

The aim of this laboratory was to numerically calculate the roots of functions using two
different methods: the bisection method and the Newton-Raphson method.

1.1 The Bisection Method

The first method used in this laboratory was the bisection method. This method relies
on Bolzano’s Theorem1, which states that, for a continuous function f , if f(a) and f(b)
have opposite signs, then there must lie a root in between a and b, i.e. f(x) = 0 for
some x ∈ (a, b). For the bisection method to work, one must choose points x1 and x3
such that f(x1) is negative and f(x3) is positive, and calculate the midpoint x2 of these
points using the equation

x2 =
x1 + x3

2
. (1)

If f(x2) = 0, then x2 is a root, and no further calculation is required. If f(x2) < 0, then
x2 replaces x1. If f(x2) > 0, then x2 replaces x3. In the cases where f(x2) 6= 0, x2 is
found for the new values of x1 and x3 using equation 1. This process is repeated until
f(x) ≈ 0, within a specified tolerance. This method was used in Exercise 1 to find the
roots of the equation f(x) = 2x2 − 10x+ 12.

1.2 The Newton-Raphson Method

The second method used in this laboratory was the Newton-Raphson method. This
method relies on the Taylor series expansion.2 The series

f(a+ x) =
∞∑
n=0

f (n)(a)

n!
xn (2)

expresses a continuous function about a given point a as a polynomial in terms of its
derivatives at that point. This infinite sum is not an approximation, however it can be
truncated at the linear term in x to approximate the function

f(a+ x) = f(a) + x f ′(a) +O
(
x2
)

≈ f(a) + x f ′(a). (3)

Letting a+ x be a root results in f(a+ x) = 0. Rearranging equation 3 leads to

x ≈ − f(a)
f ′(a)

. (4)

Since a + x is a root of the function, adding a to each side of equation 4 results in an
expression for the root

a+ x ≈ a− f(a)

f ′(a)
. (5)

1Bolzano, 1817
2Taylor, 1715

2

For the Newton-Raphson method, an initial guess of the root a is chosen and the ap-
proximate root is calculated using equation 5. This approximate root takes the new
value of a, and the process is repeated until f(a) ≈ 0, within a specified tolerance.
This method can also be used to find maximums/minimums of a function. If f ′(a) = 0,

then a is a local maximum or minimum of the function. Equation 5 can be changed to
calculate the max/min by simply finding the root of f ′(x)

a+ x ≈ a− f ′(a)

f ′′(a)
. (6)

This method was used in Exercise 2 to find the roots of the equation
f(x) = 2x2 − 10x+ 12, and in Exercise 3 to find the bond length of the interaction

potential between two ions by finding the minimum of V (x) = Ae−
x
p − e2

4π ε0 x
, the

potential as a function of separation between the ions.

2 Methodology

2.1 Exercise 1: Finding Roots of a Parabolic Function -
Bisection Method

1. For this exercise, the parabola f(x) = 2x2 − 10x+ 12 was chosen.

2. Initial points x1 and x3 were then defined. If either f(x1) > 0 or f(x3) < 0, then
the user was asked to change x1 and x3. If either x1 or x3 were already roots,
then the programme stopped. This was achieved using the following if/elif
statements:

from sys import exit
if f(x1) > 0 or f(x3) < 0:

print("Programme not run. Change x1 and x3 \
so that f(x1) < 0 and f(x3) > 0.")
exit(0)

elif f(x1) == 0 and f(x3) == 0:
print("x1 =", x1, "and x3 =", x3, "are roots.")
exit(0)

elif f(x1) == 0:
print("x1 =", x1, "is a root.")
exit(0)

elif f(x3) == 0:
print("x3 =", x3, "is a root.")
exit(0)

3. x2 was calculated using equation 1, and replaced either x1 or x3 based on its sign.

4. The function was plotted, including the midpoint (x2, f(x2)) after this iteration.

3

5. Step 3 was repeated a number of times until f(x2) ≈ 0, within a specified tolerance,
and the number of steps to do so was counted. This was achieved using the
following while loop:

nsteps = 1
while abs(f(x2)) > tol:

x2 = (x1 + x3) / 2
if f(x2) < 0:

x1 = x2
elif f(x2) > 0:

x3 = x2
nsteps += 1

Here, nsteps was set to 1, as one iteration had already been carried out.

6. Steps 2-5 were repeated to approximate the other root of the parabola, using
different initial values x1 and x3.

7. A function was defined to calculate the number of iterations carried out to find a
root of the parabola, with tolerance, x1 and x2 as parameters. This function was
plotted against a range of tolerances, for given x1 and x3.

2.2 Exercise 2: Finding Roots of a Parabolic Function -
Newton-Raphson Method

1. The parabola used in Exercise 1 was also chosen for this exercise, with derivative
f ′(x) = 4x− 10.

2. x1 was initialised. If f ′(x) = 0, then the user was asked to change x1, as this
would result in a singularity using equation 5. If x1 was already a root, then the
programme stopped. This was achieved using the following if/elif statements:

from sys import exit
if f_prime(x1) == 0:

print("Programme not run. Choose an x1 that \
is not a minimum or maximum of the function.")
exit(0)

elif f(x1) == 0:
print("x1 =", x1, "is a root.")
exit(0)

3. One iteration of the Newton-Raphson method was carried out, setting x1 to the

value of x1 −
f(x1)

f ′(x1)
.

4. The function was plotted, including the point (x1, f(x1)) after this iteration.

4

5. Step 3 was repeated a number of times until f(x1) ≈ 0, within a specified tolerance,
and the number of steps to do so was counted. This was achieved using the
following while loop:

nsteps = 1
while abs(f(x1)) > tol:

x1 = x1 - f(x1) / f_prime(x1)
nsteps += 1

As in Exercise 1, nsteps was set to 1 as one iteration had already been carried
out.

6. Steps 3-5 were repeated to approximate the other root of the parabola, using a
different initial value x1.

7. A similar function to that in Exercise 1 Step 7 was defined to calculate the number
of iterations required to approximate a root using the Newton-Raphson method,
with tolerance and x1 as parameters. This was plotted against the same range of
tolerances, for given x1.

2.3 Exercise 3: Finding Minima Roots of a Potential Energy
Function

1. The functions V (x) = Ae−
x
p − e2

4π ε0 x
and F (x) = −V ′(x) = A

p
e−

x
p − e2

4π ε0 x2

were defined, with x in nm, V in eV and F in eV nm−1.
e2

4π ε0
, A and p were set as

1.44 eV nm, 1090 eV and 0.033 nm, respectively, so that V (x) was the interaction
potential between Na+ and Cl− as a function of the seperation between the ions,
and F (x) was the force acting on the ions as a function of the separation. These
functions were plotted against a range of x values.

2. The functions V ′(x) = −F (x) and V ′′(x) = A

p2
e−

x
p − e2

2π ε0 x3
were defined.

3. The Newton-Raphson method was implemented to find the bond length of the
ions, i.e. the minimum of V (x), using equation 6 with a specified tolerance, using
a similar while loop as in Exercise 2 Step 5.

5

3 Results

3.1 Exercise 1: Finding Roots of a Parabolic Function -
Bisection Method

For the first root, x1 and x3 were set as 2.5 and 1.0, respectively. After one iteration,
the midpoint x2 = 1.75 was set as x3. After 14 steps, the root was approximated to be
2.000030517578125, within a tolerance of 0.0001. For the second root, x1 and x3 were set
as 2.5 and 4.0, respectively. After one iteration, the midpoint x2 = 3.25 was set as x3.
After 14 steps, the root was approximated to be 2.999969482421875, within a tolerance
of 0.0001.

The following graphs of the parabola, initial points x1 and x3 and midpoint x2 were
obtained for each set of initial values:

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
x

1

0

1

2

3

4

5

f(x
)

Plot of f(x) = 2x2 10x + 12
f(x)
Initial (x1, f(x1))
Initial (x3, f(x3))
(x2, f(x2)) after 1 step

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
x

1

0

1

2

3

4

5

f(x
)

Plot of f(x) = 2x2 10x + 12
f(x)
Initial (x1, f(x1))
Initial (x3, f(x3))
(x2, f(x2)) after 1 step

Figure 1: Graphs of f(x) and x2 after one iteration, for each set of initial x1 and x3.

6

The number of steps to find a root using the bisection method was plotted against a
range of tolerances from 10−20 to 100, for initial x1 = 2.5 and x3 = 1.0. The following
graph and data was obtained:

10 19 10 16 10 13 10 10 10 7 10 4 10 1 102

Tolerance

0

10

20

30

40

50
St

ep
s t

ak
en

Plot of steps taken against tolerance for x1 = 2.5 and x3 = 1.0

Tolerance Steps taken
102 0
101 0
100 0
10−1 4
10−2 7
10−3 10
10−4 14
...

...
10−13 44
10−14 47
10−15 49
10−16 49

...
...

10−20 49

x = []
for i in np.linspace(-20.0, \
2.0, 2300, endpoint = True):

x.append(10.0 ∗∗ i)
y = []
for j in x:

y.append(steps(j, 2.5, 1.0))
plt.plot(x, y)
plt.xscale("log")

Figure 2: Graph of steps taken to reach the approximate root against the allowed tol-
erance for the approximate root, a table of the points on the graph, and a
summarised version of the code used to plot the graph, for x1 = 2.5 and
x3 = 1.0. steps was defined to be a function that found the number of
steps taken to reach an approximate root of f(x), with tolerance, x1 and x3 as
parameters.

7

3.2 Exercise 2: Finding Roots of a Parabolic Function -
Newton-Raphson Method

For the first root, x1 was set as 1.0. After one iteration, x1 was set as 1.666666666666665.
After 4 steps, the root was approximated to be 1.9999847409781035, within a tolerance
of 0.0001. For the second root, x1 was set as 4.0. After one iteration, x1 was set as
3.3333333333333335. After 4 steps, the root was approximated to be 3.000015259021897,
within a tolerance of 0.0001.

The following graphs of the parabola, initial point x1 and x1 after one iteration were
obtained for each initial point:

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
x

1

0

1

2

3

4

5

f(x
),

f′
(x

)

Plot of f(x) and f ′(x)
f(x)
f ′(x)
Initial (x1, f(x1))
(x1, f(x1)) after 1 step

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
x

1

0

1

2

3

4

5

f(x
),

f′
(x

)

Plot of f(x) and f ′(x)
f(x)
f ′(x)
Initial (x1, f(x1))
(x1, f(x1)) after 1 step

Figure 3: Graphs of f(x), f ′(x) and x1 after one iteration, for each initial x1.

8

The number of steps to find a root was plotted against a range of tolerances from
10−20 to 100, for initial x1 = 1.0. The following graph and data was obtained:

10 19 10 16 10 13 10 10 10 7 10 4 10 1 102

Tolerance

0

1

2

3

4

5

6
St

ep
s t

ak
en

Plot of steps taken against tolerance for x1 = 1

Tolerance Steps taken
102 0
101 0
100 1
10−1 3
10−2 3
10−3 4
10−4 4
10−5 5
...

...
10−9 5
10−10 6

...
...

10−20 6
...

...
10−100 6

x = []
for i in np.linspace(-20.0, \
2.0, 2300, endpoint = True):

x.append(10.0 ∗∗ i)
y = []
for j in x:

y.append(steps(j, 1.0))
plt.plot(x, y)
plt.xscale("log")

Figure 4: Graph of steps taken to reach the approximate root against the allowed tol-
erance for the approximate root, a table of the points on the graph, and a
summarised version of the code used to plot the graph, for x1 = 1.0. steps
was defined to be a function that found the number of steps taken to reach an
approximate root of f(x), with tolerance and x1 as parameters.

9

3.3 Exercise 3: Finding Minima Roots of a Potential Energy
Function

x1 was set to be 0.24 nm as the initial guess of the corresponding minimum of V (x).
After 4 steps, the bond length was approximated to be 0.23605384841577942 nm, within
a tolerance of 10−14 eV.
The following graphs of V (x) and F (x), including (0.24, (V (0.24)) and (0.24, F (0.24))

respectively, were obtained:

0.0 0.2 0.4 0.6 0.8 1.0
x, in nm

15

10

5

0

5

10

15

20

25

30

V(
x)

, i
n

eV

Plot of V(x)
V(x)
(0.24, V(0.24))

0.0 0.2 0.4 0.6 0.8 1.0
x, in nm

15

10

5

0

5

10

15

20

25

30

F(
x)

, i
n

eV
 n

m
1

Plot of F(x) = V ′(x)
F(x)
(0.24, F(0.24))

Figure 5: Graphs of V (x) and F (x), including the initial guess of the minimum x1 = 0.24
nm. Since the derivative of a function evaluated at a minimum or maximum
of V (x) is 0 eV, and F (x) = −V ′(x), then F (x) at the minimum of V (x) will
also be 0 eV. It is thus sufficient to consider F (x) at the minimum of V (x).

10

4 Discussion

4.1 Precision of Approximate Roots

From Figures 2 and 4, the number of steps required to approximate the analytic root
x = 2 for f(x) = 2x2−12x+10 using both the bisection method and the Newton-Raphson
method seemingly reached a maximum. These maximum values were attained at a
tolerance of approximately 10−15. For Exercise 3, if the tolerance was taken to be 10−15
eV, the programme was stuck in an infinite loop, and never attained an approximate
root within this tolerance. This is due to the fact that Python has a limit on the number
of digits a float can have. If this limit was increased, then both methods would take
more steps for tolerances smaller than 10−15 to approximate the same root for Exercises
1 and 2, and a more precise approximate root would be calculated for Exercise 3.

4.2 Bisection Method vs Newton-Raphson Method
Efficiency

The following figure is a graph of the efficiency of both methods approximating the same
root:

10 15 10 13 10 11 10 9 10 7 10 5 10 3 10 1 101

Tolerance

0

10

20

30

40

50

St
ep

s t
ak

en

Efficiency of bisection and Newton-Raphson methods
Bisection method
Newton-Raphson method

Figure 6: Graph of number of steps required to approximate the analytic root x = 2 for
f(x) = 2x2 − 10x + 12, for both the bisection method and Newton-Raphson
method.

For tolerances greater than 0.1, the two methods require a similar number of steps
to approximate a root. However, the Newton-Raphson method needs far fewer steps
when considering a tolerance less than 0.1. Clearly, for precise approximations, the
Newton-Raphson method is much more efficient at approximating roots than the bisec-
tion method.

11

4.3 Conditions on Initial Points

For the Newton-Raphson method, from equation 5, the derivative of the function eval-
uated at the initial guess cannot be 0, i.e. the initial guess cannot be a maximum or
minimum, or else the approximate root after one iteration would be a singularity.

The Newton-Rapshon method also requires the initial guess to be on the "same side"
as the root with respect to a maximum or minimum; that is, for example, if the actual
root is less than a certain minimum or maximum, then to approximate this root, the
initial guess must also be less than this minimum or maximum. For Exercise 3, if the
initial guess was taken to be 0.4 nm, which is clearly greater than the maximum of V ′(x)
(as it is clearly greater than the minimum of F (x) = −V ′(x)), then for a tolerance of
10−14 eV, the approximate root of V ′(x) is 15,502,127.088146694 nm ≈ 1.55 cm. Even
though V ′(x) evaluated at this point is indeed approximately 0 eV within the specified
tolerance, this point is not a root, as V ′(x) asymptotes to 0 eV as x tends to infinity,
but never reaches 0 eV. Thus for any non-zero tolerance, the Newton-Raphson method
can result in a value that is not actually a root, if certain initial guesses are chosen.

The only condition for the initial points of the bisection method is that they have
opposite sign. Although the Newton-Raphson method is more efficient than the bisection
method, it is comparably easier to choose compatible initial points for the bisection
method than for the Newton-Raphson method.

5 Conclusions

Both the bisection method and Newton-Raphson method were successful in approx-
imating roots of a parabola. For a tolerance of 0.0001, the approximations ranged
from 1.9999847409781035 to 2.00003051757812 for an analytic root of 2, and from
2.999969482421875 to 3.000015259021897 for an analytic root of 3. For these roots,
the bisection method required 14 steps, and the Newton-Raphson method required 4
steps. For tolerances as low as to 10−15, the bisection method required as many as 49
steps, and the Newton-Raphson method required up to 6 steps. The Newton-Raphson
method was also successful in approximating the bond length between two ions. The
bond length between Na+ and Cl− was found to be 0.23605384841577942 nm, within a
tolerance of 10−14 eV.
Approximations for roots were found to be largely dependent on the precision in which

figures are considered in calculations.
The Newton-Raphson method was found to be far quicker than the bisection method

in finding a root of a function. Despite this, it is much simpler to meet the requirements
of the initial points needed for the bisection method than that of the guess needed for
the Newton-Raphson method.

6 References & Appendix
1. B. Bolzano, Rein Analytischer Beweis..., Gottlieb Haase, Prague, 1817.
2. B. Taylor, Methodus Incrementorum Directa & Inversa, London, 1715.
All code used in this laboratory can be found here:
https://github.com/campioru/SF_Lab_1

12

