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_% a;;i" =enUn (Schrodinger equation)
Y, = A sin (nzx) (for some A, where n =0,1,2,...)
a;;" = AZW cos (nzx) (first derivative of ¢, w.r.t z)
6;;@" = —Afzﬁz sin (nzx) (second derivative of v, w.r.t x)
= —% U (substituting 1, = A sin (27%))
% % Un = €n Un (substituting %)
== g, = % (rearranging for e,,)
b)
N = Z MB(e,) (from (25) in notes)
n
= i Bt (substituting Maxwell-Boltzmann distribution expression)
n=0

n2x2

o0
u ___htx® 2
:ekBTE e 2mL2kgT
n=0

(taking e*sT outside the sum as it has no n dependence, substituting ¢,,)
. O h242 2
_ ek;T/ e 2mLZkgT " dn
0

(approximating the sum as an integral as Ae,, < kT for typical values of m and L)

oo
— eF5T / e dn (labelling a = % for convenience)
0
w1 [2m L2k T
— eFBT 3\ / TT(B (computing fooo e~ dg = 5 +/Z, substituting a)
= eFBT Lng (labelling quantum concentration ng = 1/ 2EpL)
N .
= pu=kpTlhh(— (rearranging for u)
L nQ



U= (e) (internal energy expression)
= e fMP(en) (using (X) =32, Xi f(ei, T, )

X K2n2 g2 72122

123 —
— E e*BT ¢ 2mL2kpT
2m L2

n=0
(substituting e,, and fMB, splitting exponential of sum into product of exponentials for convenience)

h27'r2 e ad 2
_ echT§ n2e—an

© 2m L2
n=0 5 o
(taking terms not depending on n outside the sum, labelling a = 27&% for convenience)
RriN (>
=— n2e " dn
2m L3 nQ Jo
K
(approximating the sum as an integral as before, substituting e*sT = %)

RmN 1 7 1 oo 5 aa? /7
= oml® ng 4l (computing [~ z%e dr = - )
_h2772N mkgT _%ﬁ 22 B
o2mI3 \ 2h27 4 \2mL2kpT

3
2

N

(substituting ng and a)

1
U= 3 NkpT (simplifying)

The internal energy of an ideal gas of N atoms at temperature 7' in one dimension is %N kpT, whereas
in three dimensions it is %NkBT, i.e. Usp = 3Uip. In one dimension, each atom has a single degree of

freedom corresponding to one translational axis, and so the translational energy of each atom is %. In three
dimensions, each atom has three degrees of freedom corresponding to three translational axes, and so the

translational energy of each atom is

2
%. The principle of equipartition of energy dictates that each

squared term in a momentum coordinate will contribute %k;BT to the system’s internal energy. Thus the
total amount of energy contributed by all the atoms is %N kpT for each axis, i.e. %N kpT for one dimension,
and %N kpT for three dimensions, as calculated.

d)

F
w= or (expression in terms of u, F' and N)
ON )11
N
= F= / w(N)dN (rearranging for F')
0
N N
= / kgTIn < > dN (substituting p)
0 Lng

N
=kp T/ (In(N) —In(Lng)) dN
0
(taking kp T outside the integral as it has no N dependence, using In () = In(a) — In(b))

=kpT (NIn(N)— N — Nn(Lng))
(computing [In(z)dz = xzIn(z) — 2 and evaluating from 0 to V)

N
=kgTN (ln (L) -1- ln(nQ)> (rearranging for convenience)
1
N m kB T\? . .
=kgTN <1n <L) —1—1In ( o2 > > (substituting ng)
N
L

>—1—;ln<;22ki) —;m(:r))

(using logarithm rules to separate T for next step)




OF
S=—-|—= (expression in terms of S, F' and T')
') N
N 1 mkp 1 1 o OF
=—kg N (ln <L) -1- iln (2h27r> ~5 ln(T)) —kgTN (_2T> (computing 5z )
N 1 1
=—kg N <1n <L) - g ~3 In (;;ifi) ~3 ln(T)) (simplifying)
N 3 S
S=—kgN <1n ( - ) (expressing in terms of ng)
LnQ 2

We can verify that this entropy is correct by using the expression for U in terms of F), T and S

U=F+TS

B N 1. (mkg) 1 N\ 3 1, (mkg) 1
1

=—-NkpT
2 B4,

as before.

Mathematica calculations

Integrate[E'axz, {x, 0, oo}]

A
2 \/a

Re[a] >0

Integr'ate[x2 E2% ) (x, 0, oo}]

\r

4a3/2

Re[a] >0

Integrate[Log[x], X]

-X + X Log[Xx]



Z(N,T,V) Ze 5T

ﬁwE r+i

— 7 = E e kBT
hwp hwpr
— ¢ 2kBT 67 kpT

(partition function definition)

(substituting energy of a single oscillator E,.)

(expanding the exponentlal into a product and taking terms terms not depending on r outside the sum)

hwp

o0
— ¢ 2kBT E (6

hwp
k5T

_ hwp 1
= ¢ BT (M) (computing Y07 z" =
1 —e kBT

7y = - csch
DISCUSS DISCUSS DISCUSS
b)

F=—kgTh(Z2)

1
= —kpTln (2 csce

i

(s

F=kpTln (2sinh (;‘;’;))

(using csch(z) =

(rewriting the exponential as a geometric series)

hwp

—ifr <l ] h”’E > 0and so e FBT < 1)

(multiplying and simplifying)

(using csch(z) = =)

(expression for F in terms of Z)

(substituting Z7)

L~ and In (1) =

sinh(z)

—1In(a))



er P(e;) (mean definition)

1 —hwE(r+ ) 1 . .
hwg (r+ =) e F8T (substituting &, and P(e;))

hwE(H—%) 1 & hwE(r-f—;))

(substituting and splitting the sums for convenience)

_hwp hwEr
= hwg T 2kpgT re kT -

(noticing the second sum is smlply Z, taklng terms not depending on r outside the first sum)

hwp _ hwp _ hwp e _ hwpg r 1
= hwg e?FpT _ ¢ 2kpT | ¢ ZkpT E r| e *sT 4 3
r=0

(substituting Z in exponential form, rewriting sum as geometric series)

o) r—1
— hwE ezz;ET —e 2Z;ET e 27:;3}37" 67:;7? ZT 67% + }
r=0 2
(taking a term outside the sum to rewrite the power inside the sum as r — 1 for the next step)

hwpg 3hwp 1
=h ST T 2kpT T 2kpT _
wE <<e ’ e ’ > ‘ i Z de’ + 2)

_fep
(labelling x = ¢ *27 and noticing the term inside the sum is a derivative w.r.t. x, multiplying exponentials)

= hw 6_227? 76_2:55 i 1 +1
- rE de \1—=x 2

(sum of derivatives = derivative of sum, computing ZZO:O " = ﬁ, multiplying exponentials)
1 1
—h )
WE ((x T ) x)2+2>
(computing dil% = =2 writing all exponentials in terms of = for convenience)
T 1 R
= hwg - (dividing first term by 1 — z)
1—=x 2
h 2 1—
wE < xl—i— x> (simplifying to get a single fraction)
-z
xé +x -3
( I I ) (multiplying top and bottom by :1:_%)
€T 2 —x2
hwp hwg
2kgT 2kgT
( nwEB te th (substituting x)
e2kpT — g 2kpT
g= coth fiwp (using coth(z) = &+
2 % T & eFme®
U=3N¢ (N oscillators with 3 degrees of freedom in a solid)
3N h
_ wWgE th hwE
2 2kp T



d)

ou
Cy=|—=— (expression for constant volume heat capacity)
oT ) v
3N h h h
= TwE (— csch? (2;}?) (— ok wI;Q )) (computing the derivative)
B B
3N h? w2 h
Cy = W;;E csch? (2]:;?) (simplifying)
2
3N h? w3, 2
- i h(z) = 2=
4kp T? eiQZ;ET _ e*zﬁ:;ET (using csch(z) = r=c==)
W 2
3N h? w?, e 2r’“BET
kT \ %
hw
(factoring out 22 = 4, multiplying top and bottom of squared term by eZkBET)
9 o Zw}%
3N h*wy eFs ( e th tor)
= squaring the numerator
kp T2 ( hw g ) 2 4 &
eksT —1
9E 2 GQTE . hwp
=3Nkp T) 7o 2 (labelling 0 = %22)
(eTE — 1)
— C‘p/honon

i.e. the constant volume heat capacity for the Einstein solid is the same as that of phonon gas.

e)

S=kgnQ (entropy in terms of the multiplicity function)
(BN +n—1)!
=kpln|—————+
B ( nl (3N — 1))
(multiplicity function for 3N oscillators with n total quanta of energy, from CA1 Q1)

n n

z3kBN[(1+3iN) In (1+3lN) — ol (37\[” (CA1 Qlc)

U =3N hwg (;—&-F)

(internal energy in terms of number of oscillators 3N each with average quanta of energy 7)

1
=3N hwg (2 + ?3\7) (noticing that total quanta of energy n = 3N 7)
Also, U =3N¢ (from c¢)
1 _hup
=3Nhwg | =+ ‘ (from ¢, where z = e ’VB]%)
2 1—-=x
1 1 .. . e
=3Nhwp | 5+ 55— (substituting « and simplifying)
2 emt
no_ 1 ing th ions for U
= N = TE (equating the two expressions for U)
eksT —1



=3k N

3kp N

S(T,N) = 3kp N

1
=g 1n< 7 >] (substituting %)
-1 ekBT — 1

1 1
—ln<w ))—i—ln(l-i—w >]
ekFsT — 1] e*BT — 1]

(expanding and rearranging)

1 hep 1
—— <ln (ekzﬁ" -1+ 1)) +In (1 w)] (using In(a) — In(b) = In (%))
eFsT —1 efsT —1

f)

= S

From plotting the function f(7T) =

for small T

(using In (%) = a)

hw

(using e*5T > 1 for large T')

~ In(1) (using —— < 1 for large T)
FBT
=0
~ TLZE (using eF5T > 1 for large T')
Te*sT

TeT, we can see that lims_,g f(T) = o0, and so ﬁ is approximately 0

Plot of f(T) = Tet
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Since S = 3N§L‘f§ = fz],j;f?) is simply a scaling of ﬁ and T, we can deduce that S must also be 0 for

TekBT )

small T', i.e.
S(T,N)=~0

3Nkp

Below is the plot of —— S (% TN ) and the corresponding low temperature approximation (we scale T'
and S by constants in order to plot without assigning values to N, ky, h and wg).

Plot of —~— S(T, N)

3N kg
— Analytic
04 Low temperature approximation
0.3
=4
=
n
g 0.2+
[a9]
0.1 A
0.0
1 1 1 1
0.0 0.1 0.2 0.3 0.4 0.5
hwE
kr T
g)
g h h? w?
eFBT =1+ /CBL; + k%L;“EQ +... (expressed as a series)
hwp hwg  h*w%
gt — 1= L
e T | RBT?
h
~ ﬁ (for large T, i.e. small %, terms of quadratic order and higher don’t contribute)
B
h kT kpT hwp
= S=~3kpN [ka; hBTE +1In (1 + 7;;!2)] (substituting TRt — 1)
S(T,N)~3kgN |[1+1In|— (using 72=- > 1 for large T')
hwE WE

Below is the plot of =— S (h,f—; T,N ) and the corresponding high temperature approximation (scaling 7'

3Nkp
and S as before).
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Plot of K S(T,N)

351 — Analytic
High temperature approximation
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[

Mathematica calculations

Sum(x", {n, 0, }]
1

1-X



