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Problem 1

dω = d(xy dx) + d(3 dy)− d(yz dz))

= y dx ∧ dx+ x dy ∧ dx+ 0− z dy ∧ dz − y dz ∧ dz

= −x dx ∧ dy − z dy ∧ dz

d(dω) = −d(x dx ∧ dy)− d(z dy ∧ dz)

= −dx ∧ dx ∧ dy − d ∧ dy ∧ dz

=⇒ d(dω) = 0

ω ∧ η = (xy dx+ 3 dy − yz dz) ∧
(
x dx− yz2 dy + 2x dz

)
= x2y dx ∧ dx− xy2z2 dx ∧ dy + 2x2y dx ∧ dz

+ 3x dy ∧ dx− 3yz2 dy ∧ dy + 6x dy ∧ dz

− xyz dz ∧ dx+ y2z3 dz ∧ dy − 2xyz dz ∧ dz

=
(
−xy2z2 − 3x

)
dx ∧ dy +

(
6x− y2z3

)
dy ∧ dz +

(
−2x2y − xyz

)
dz ∧ dx

d(ω ∧ η) = d
((
−xy2z2 − 3x

)
dx ∧ dy

)
+ d

((
6x− y2z3

)
dy ∧ dz

)
+ d

((
−2x2y − xyz

)
dz ∧ dx

)
=

(
−y2z2 dx− 2xyz2 dy − 2xy2z dz − 3 dx

)
∧ dx ∧ dy

+
(
6 dx− 2yz3 dy − 3y2z2 dz

)
∧ dy ∧ dz

+
(
−4xy dx− 2x2 dy − yz dx− xz dy − xy dz

)
∧ dz ∧ dx

=
(
−2xy2z + 6− 2x2 − xz

)
dx ∧ dy ∧ dz

dω = −x dx ∧ dy − z dy ∧ dz dη = 2yz dy ∧ dz − 2 dz ∧ dx

dω ∧ η = (−x dx ∧ dy − z dy ∧ dz) ∧
(
x dx− yz2 dy + 2x dz

)
ω ∧ dη = (xy dx+ 3 dy − yz dz) ∧ (2yz dy ∧ dz − 2 dz ∧ dx)

= −2x2 dx ∧ dy ∧ dz − xz dy ∧ dz ∧ dx = 2xy2z dx ∧ dy ∧ dz − 6 dy ∧ dz ∧ dx

=
(
−2x2 − xz

)
dx ∧ dy ∧ dz =

(
2xy2z − 6

)
dx ∧ dy ∧ dz

dω ∧ η − ω ∧ dη =
(
−2x2 − xz − 2xy2z + 6

)
dx ∧ dy ∧ dz

=⇒ d(ω ∧ η) = dω ∧ η − ω ∧ dη

Problem 2

Let p ∈ M and v ∈ TpM be given. Define g(t) = f(p + t v). We thus have that g′(t) = f ′(p + t v) =
Df(p + t v) · v by the chain rule. Since f has an extremum at p, then since g(0) = f(p) we must also
have that g has an extremum at 0. Therefore g′(0) = Df(p) · v = dfp(v) = 0, and so dfp is simply zero.

This argument does not hold for a manifold with boundary, however, since the derivative of f at a
boundary point is not defined, and so we cannot say the same is true if M is a manifold with boundary.
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Problem 3

a)

dη = d(F ∗ω)

= F ∗dω

= F ∗(2 dx ∧ dy)

Thus we have dη ∈ Ω2
(
TpS

1
)
. However, the tangent plane at any point on S1 is simply a line and thus

one-dimensional. Thus dη is a 2-form defined on a 1-dimensional vector space, and so must be 0.

b)

ωp(v) = (p1 dy − p2 dx)((v1, v2))

=
(
p1Ψ

(2) − p2Ψ
(1)

)
(v1e1 + v2e2)

= v1

[
p1Ψ

(2)(e1)− p2Ψ
(1)(e1)

]
+ v2

[
p1Ψ

(2)(e2)− p2Ψ
(1)(e2)

]
= −v1p2 + v2p1

ηp(v) = (F ∗ω)p(v)

= (DF (p))∗ωF (p)(v)

= ωF (p)(DF (p)v)

= ωp(v) (since F is an inclusion)

= −v1p2 + v2p1

If we had ηp was always zero then we would need p1 = p2 = 0. However, since p ∈ S1 then p1 and p2
cannot both be 0, therefore ηp is non-zero.

c)

Since η is simply a restriction of ω to be a tensor on S1 as opposed to R2, then it is sufficient to show
that there is no function f ∈ Ω0

(
S1

)
such that df = ω.

Say there exists a function f ∈ Ω0
(
S1

)
such that df = ω. Then we have

df =
∂f

∂x
dx+

∂f

∂y
dy

ω = −y dx+ x dy

∂f

∂x
= −y

∂f

∂y
= x

f = −xy + c1(y) f = xy + c2(x)

We thus require that c1(y)− c2(x) = 2xy, which is a contradiction, and so we can conclude that no such
function exists.
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d)

(exp∗ η)t(x) = ((exp∗ ◦F ∗)ω)t(x)

= ((F ◦ exp)∗ω)t(x) (proven in Problem 4)

= (exp∗ ω)t(x) (since F is an inclusion)

= (D exp(t))∗ωexp(t)(x)

= ωexp(t)(D exp(t)x)

= ω(cos(t),sin(t))((−x sin(t), x cos(t)))

= x sin(t) sin(t) + x cos(t) cos(t)

= x

=⇒ exp∗ η = dx

Clearly, if we have f = x ∈ Ω0(R) then df = dx = exp∗ η, and so exp∗ η is df .

Problem 4

(F ∗ω)p(v1, . . . , vk) = (DF (p))∗ωF (p)(v1, . . . , vk)

= ωF (p)(DF (p)v1, . . . , DF (p)vk)

a)

((idM )∗ω)p(v1, . . . , vk) = ωF (p)(D(idM )(p)v1, . . . , D(idM )(p)vk)

= ωF (p)(v1, . . . , vk)

= (idΩk(M)ω)p(v1, . . . , vk)

=⇒ (idM )∗ = idΩk(M)

b)

((f ◦ g)∗ω)p(v1, . . . , vk) = ((D(f ◦ g))(p))∗ω(f◦g)(p)(v1, . . . , vk)

= (Df(g(p)) ·Dg(p))∗ωf(g(p))(v1, . . . , vk)

= ωf(g(p))(Df(g(p)) ·Dg(p)v1, . . . , Df(g(p)) ·Dg(p)vk)

= (Df(g(p)))∗ωf(g(p))(Dg(p)v1, . . . , Dg(p)vk)

= (f∗ω)g(p)(Dg(p)v1, . . . , Dg(p)vk)

= (Dg(p))∗(f∗ω)g(p)(v1, . . . , vk)

= (g∗(f∗ω))p(v1, . . . , vk)

= ((g∗ ◦ f∗)ω)p(v1, . . . , vk)

=⇒ (f ◦ g)∗ = g∗ ◦ f∗
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