MAU23206: Calculus on Manifolds Homework 4 due 25/02/2022

Ruaidhrí Campion 19333850 JS Theoretical Physics

Problem 1

a)

$$\begin{split} f(x,y) &= x_1 \, y_2 - x_2 \, y_1 + x_1 \, y_1 \\ f(y,x) &= y_1 \, x_2 - y_2 \, x_1 + y_1 \, x_1 \\ &= -x_1 \, y_2 + x_2 \, y_1 + x_1 \, y_1 \\ &\neq -f(x,y) \implies f \text{ is not alternating} \end{split}$$

b)

g is clearly a tensor since each component of x and y are mapped linearly.

$$g(x,y) = x_1 y_3 - x_3 y_1$$

$$g(y,x) = y_1 x_3 - y_3 x_1$$

$$= -(x_1 y_3 - x_3 y_1)$$

$$= -g(x,y) \implies g \text{ is alternating}$$

$$2! g = Ag$$

$$2 g = A(e^1 \otimes e^3 - e^3 \otimes e^1)$$

$$= e^1 \wedge e^3 - e^3 \wedge e^1$$

$$= 2 e^1 \wedge e^3$$

$$\implies g = e^1 \wedge e^3$$

c)

h is clearly not a tensor, as the maps of x and y are not linear, and so h is not an alternating tensor.

Problem 2

a)

$$F = 5 e^3 \otimes e^5 \otimes e^2 - 3 e^1 \otimes e^2 \otimes e^2$$

$$AF = 5 e^3 \wedge e^5 \wedge e^2 - 3 e^1 \wedge e^2 \wedge e^2$$

$$AG = e^1 \otimes e^5 - e^4 \otimes e^5$$

$$AG = e^1 \wedge e^5 - e^4 \wedge e^5$$

$$AF = 5 e^3 \wedge e^5 \wedge e^2$$

$$AF(x,y,z) = 5e^{3} \wedge e^{5} \wedge e^{2}(x,y,z)$$

$$= 5\begin{vmatrix} x_{3} & y_{3} & z_{3} \\ x_{5} & y_{5} & z_{5} \\ x_{2} & y_{2} & z_{2} \end{vmatrix}$$

$$AF(x,y,z) = 5\left[x_{3}\left(y_{5}z_{2} - y_{2}z_{5}\right) + y_{3}\left(x_{2}z_{5} - x_{5}z_{2}\right) + z_{3}\left(x_{5}y_{2} - x_{2}y_{5}\right)\right]$$

$$AG(x,y) = \left(e^{1} \wedge e^{5} - e^{4} \wedge e^{5}\right)(x,y)$$

$$= \begin{vmatrix} x_{1} & y_{1} \\ x_{5} & y_{5} \end{vmatrix} - \begin{vmatrix} x_{4} & y_{4} \\ x_{5} & y_{5} \end{vmatrix}$$

$$= x_{1}y_{5} - x_{5}y_{1} - x_{4}y_{5} + x_{5}y_{4}$$

$$AG(x,y) = \left(y_{4} - y_{1}\right)x_{5} + \left(x_{1} - x_{4}\right)y_{5}$$

$$(AF \wedge AG)(v, w, x, y, z) = \left(5e^{3} \wedge e^{5} \wedge e^{2}\right) \wedge \left(e^{1} \wedge e^{5} - e^{4} \wedge e^{5}\right)(v, w, x, y, z)$$

$$= 5\left(e^{3} \wedge e^{5} \wedge e^{2} \wedge e^{1} \wedge e^{5} - e^{3} \wedge e^{5} \wedge e^{2} \wedge e^{4} \wedge e^{5}\right)(v, w, x, y, z)$$

$$(AF \wedge AG)(v, w, x, y, z) = 0$$

Problem 3

$$AG(\mathbf{v}_{1}, \dots, \mathbf{v}_{k}) = \sum_{\sigma} (\operatorname{sgn} \sigma) G^{\sigma}(\mathbf{v}_{1}, \dots, \mathbf{v}_{k})$$

$$= G(\mathbf{v}_{1}, \dots, \mathbf{v}_{k}) \sum_{\sigma} \operatorname{sgn} \sigma \qquad (G \text{ symmetric i.e. } G^{\sigma} = G)$$

$$= G(\mathbf{v}_{1}, \dots, \mathbf{v}_{k}) \sum_{\sigma} \operatorname{sgn}(e \circ \sigma) \qquad (\operatorname{since } \sigma \to e \circ \sigma \in S_{k} \text{ isomorphism})$$

$$= G(\mathbf{v}_{1}, \dots, \mathbf{v}_{k}) \sum_{\sigma} (-\operatorname{sgn} \sigma) \qquad (\operatorname{since } e \text{ inversion})$$

$$\implies \sum_{\sigma} \operatorname{sgn} \sigma = -\sum_{\sigma} \operatorname{sgn} \sigma$$

$$\implies AG(\mathbf{v}_{1}, \dots, \mathbf{v}_{k}) = 0$$

Let us show that the converse is not true. Consider $G(x, y, z) = x_1 y_1 + z_1$. We then have

$$AG(x,y,z) = \sum_{\sigma} (\operatorname{sgn} \sigma) G^{\sigma}(x,y,z)$$

$$= G(x,y,z) + G(y,z,x) + G(z,x,y) - G(x,z,y) - G(y,x,z) - G(z,y,x)$$

$$= x_1 y_1 + z_1 + y_1 z_1 + x_1 + z_1 x_1 + y_1 - x_1 z_1 - y_1 - y_1 x_1 - z_1 - z_1 y_1 - x_1$$

$$= 0.$$

Therefore AG = 0. G, however, is not symmetric, since $G(x, z, y) = x_1 z_1 + y_1 \neq x_1 y_1 + z_1 = G(x, y, z)$, and so the converse does not hold.

Problem 4

i)

$$\det(\mathbf{1}_{n\times n}) f(\mathbf{v}_1, \dots, \mathbf{v}_n) = (\mathbf{1}_{n\times n}^* f)(\mathbf{v}_1, \dots, \mathbf{v}_n)$$

$$= f(\mathbf{1}_{n\times n} \mathbf{v}_1, \dots, \mathbf{1}_{n\times n} \mathbf{v}_n)$$

$$= f(\mathbf{v}_1, \dots, \mathbf{v}_n)$$

$$\implies \det(\mathbf{1}_{n\times n}) = 1$$

ii)

Define $A(a_1, \ldots, a_n) \equiv (a_1 \ldots a_n)$ to be the $n \times n$ matrix made up of columns a_1, \ldots, a_n , and $A_i(b) \equiv A(a_1, \ldots, a_{i-1}, b, a_{i+1}, \ldots, a_n)$ to be the $n \times n$ matrix made up of columns a_1, \ldots, a_n , replacing a_i with b. If we show that ii) is satisfied when only considering a set of unit vectors \mathbf{e}_i with $(\mathbf{e}_i)_j = \delta_i^j$, then any set of vectors can be written as a linear combination of these vectors, and so by the multilinearity of f ii) will be satisfied for any set of n vectors.

$$A_{i}^{*}(\alpha b + \beta c)f(\mathbf{e}_{1}, \dots, \mathbf{e}_{n}) = f(A_{i}^{*}(\alpha b + \beta c) \mathbf{e}_{1}, \dots, A_{i}^{*}(\alpha b + \beta c) \mathbf{e}_{n})$$

$$= f(a_{1}, \dots, a_{i-1}, \alpha b + \beta c, a_{i+1}, \dots, a_{n})$$

$$= \alpha f(a_{1}, \dots, a_{i-1}, b, a_{i+1}, \dots, a_{n}) + \beta f(a_{1}, \dots, a_{i-1}, c, a_{i+1}, \dots, a_{n})$$

$$= \alpha f(A_{i}^{*}(b) \mathbf{e}_{1}, \dots, A_{i}^{*}(b) \mathbf{e}_{n}) + \beta f(A_{i}^{*}(c) \mathbf{e}_{1}, \dots, A_{i}^{*}(c) \mathbf{e}_{n})$$

$$= \alpha A_{i}^{*}(b) f(\mathbf{e}_{1}, \dots, \mathbf{e}_{n}) + \beta A_{i}^{*}(c) f(\mathbf{e}_{1}, \dots, \mathbf{e}_{n})$$

$$= (\alpha A_{i}^{*}(b) + \beta A_{i}^{*}(c)) f(\mathbf{e}_{1}, \dots, \mathbf{e}_{n}) + \beta A_{i}^{*}(c) f(\mathbf{e}_{1}, \dots, \mathbf{e}_{n})$$

$$\implies \det(A_{i}(\alpha b + \beta c)) = \alpha \det(A_{i}(b)) + \beta \det(A_{i}(c))$$

iii)

Define $A(a_1, \ldots, a_n)$ as before, and $A_{i,j}(b) \equiv A(a_1, \ldots, a_{i-1}, b, a_{i+1}, \ldots, a_{j-1}, b, a_{j+1}, \ldots, a_n)$ to be the $n \times n$ matrix made up of columns a_1, \ldots, a_n , replacing both a_i and a_j with b. As before, we only need to satisfy iii) for a set of unit vectors.

$$A_{i,j}(b)^* f(\mathbf{e}_1, \dots, \mathbf{e}_n) = f(A_{i,j}(b) \, \mathbf{e}_1, \dots, A_{i,j}(b) \, \mathbf{e}_n)$$

$$= f(a_1, \dots, a_{i-1}, b, a_{i+1}, \dots, a_{j-1}, b, a_{j+1}, \dots, a_n)$$

$$= -f(a_1, \dots, a_{i-1}, b, a_{i+1}, \dots, a_{j-1}, b, a_{j+1}, \dots, a_n)$$

$$= 0$$

$$\implies \det(A_{i,j}(b)) = 0$$

Problem 5

a)

We must first show that $\mathcal{A}^{\bullet}(V)$ is an algebra by showing that the operation satisfies left and right distributivity and compatability with scalars.

$$\left(\sum_{i}(f_{i}+\phi_{i})\right) \wedge \left(\sum_{j}(g_{j}+\gamma_{j})\right) = \sum_{k} \left(\sum_{i+j=k}(f_{i}+\phi_{i}) \wedge (g_{j}+\gamma_{j})\right)$$

$$= \sum_{k} \left(\sum_{i+j=k}(f_{i} \wedge (g_{j}+\gamma_{j})+\phi_{i} \wedge (g_{j}+\gamma_{j}))\right)$$

$$= \sum_{k} \left(\sum_{i+j=k}(f_{i} \wedge g_{j}+f_{i} \wedge \gamma_{j}+\phi_{i} \wedge g_{j}+\phi_{i} \wedge \gamma_{j})\right)$$

$$= \sum_{k} \left(\sum_{i+j=k}f_{i} \wedge g_{j}\right) + \sum_{k} \left(\sum_{i+j=k}f_{i} \wedge \gamma_{j}\right)$$

$$+ \sum_{k} \left(\sum_{i+j=k}\phi_{i} \wedge g_{j}\right) + \sum_{k} \left(\sum_{i+j=k}\phi_{i} \wedge \gamma_{j}\right)$$

$$\left(\sum_{i} c f_{i}\right) \wedge \left(\sum_{j} g_{j}\right) = \sum_{k} \left(\sum_{i+j=k} c f_{i} \wedge g_{i}\right)$$

$$= c \sum_{k} \left(\sum_{i+j=k} f_{i} \wedge g_{j}\right)$$

$$= c \left(\left(\sum_{i} f_{i}\right) \wedge \left(\sum_{j} g_{j}\right)\right)$$

$$\Rightarrow \text{compatability with scalars}$$

$$= \sum_{k} \left(\sum_{i+j=k} f_{i} \wedge c g_{i}\right)$$

$$= \left(\sum_{i} f_{i}\right) \wedge \left(\sum_{j} c g_{j}\right)$$

Thus $\mathcal{A}^{\bullet}(V)$ is an algebra. We can show the algebra is unital by considering the operation between an element $f_0 + \ldots + f_l$ and a proposed identity $e_0 + \ldots + e_m$.

$$\left(\sum_{i} f_{i}\right) \wedge \left(\sum_{j} e_{j}\right) = \sum_{k} \left(\sum_{i+j=k} f_{i} \wedge e_{j}\right)$$

$$= f_{0} \wedge e_{0} + \left(f_{0} \wedge e_{1} + f_{1} \wedge e_{0}\right) + \dots + \left(f_{l-1} \wedge e_{m} + f_{l} \wedge e_{m-1}\right) + f_{l} \wedge e_{m}$$

$$= f_{0} + f_{1} + \dots + f_{l-1} + f_{l}$$

$$\implies e_{j} = e_{0} \delta_{j}^{0}, \text{ i.e. } e_{0} \text{ is the only non-vanishing } e_{j}$$

We thus require that $f_i \wedge e_0 = f_i$ for all $i = 0, \dots, l$.

$$f_{i} \wedge e_{0}(\mathbf{v}_{1}, \dots, \mathbf{v}_{i+0}) = \frac{1}{i!} A(f_{i} \otimes e_{0})(\mathbf{v}_{1}, \dots, \mathbf{v}_{i})$$

$$= \frac{1}{i!} \sum_{\sigma} (\operatorname{sgn} \sigma)(f_{i} \otimes e_{0})^{\sigma}(\mathbf{v}_{1}, \dots, \mathbf{v}_{i})$$

$$= \frac{1}{i!} \sum_{\sigma} (\operatorname{sgn} \sigma)(f_{i} \otimes e_{0})(\mathbf{v}_{\sigma(1)}, \dots, \mathbf{v}_{\sigma(i)})$$

$$= \frac{1}{i!} \sum_{\sigma} (\operatorname{sgn} \sigma)f_{i}(\mathbf{v}_{\sigma(1)}, \dots, \mathbf{v}_{\sigma(i)}) e_{0}$$

$$= \frac{e_{0}}{i!} \sum_{\sigma} (\operatorname{sgn} \sigma)f_{i}^{\sigma}(\mathbf{v}_{1}, \dots, \mathbf{v}_{i})$$

$$= \frac{e_{0}}{i!} Af_{i}(\mathbf{v}_{1}, \dots, \mathbf{v}_{i})$$

$$= e_{0} f_{i}(\mathbf{v}_{1}, \dots, \mathbf{v}_{i}) \qquad (\text{since } f \text{ is alternating})$$

Thus the 0-tensor that maps to 1 is the identity element of $\mathcal{A}^{\bullet}(V)$, and so $\mathcal{A}^{\bullet}(V)$ is a unital algebra. Now we must show that it is also an associative algebra by considering the operation between elements $f_0 + \ldots + f_a$, $g_0 + \ldots + g_b$, and $h_0 + \ldots + h_c$.

$$\begin{split} \left(\left(\sum_{i}f_{i}\right)\wedge\left(\sum_{j}g_{j}\right)\right)\wedge\left(\sum_{k}h_{k}\right) &= \left(\sum_{i}\left(\sum_{i+j=l}f_{i}\wedge g_{j}\right)\right)\wedge\left(\sum_{k}h_{k}\right) \\ &= \left(\sum_{i}\phi_{l}\right)\wedge\left(\sum_{k}h_{k}\right) \quad \left(\phi_{l} \equiv \sum_{i+j=l}f_{i}\wedge g_{j}, l=0,\ldots,a+b\right) \\ &= \sum_{m}\left(\sum_{t+k=m}\phi_{l}\wedge h_{k}\right) \\ &= \phi_{0}\wedge h_{0} \\ &+ \phi_{0}\wedge h_{1} + \phi_{1}\wedge h_{0} \\ &+ \ldots \\ &+ \phi_{a+b-1}\wedge h_{c} + \phi_{a+b}\wedge h_{c-1} \\ &+ \phi_{a+b}\wedge h_{c} \\ &= \left(f_{0}\wedge g_{0}\right)\wedge h_{1} + \left(f_{0}\wedge g_{1} + f_{1}\wedge g_{0}\right)\wedge h_{0} \\ &+ \ldots \\ &+ \left(f_{a-1}\wedge g_{b} + f_{a}\wedge g_{b-1}\right)\wedge h_{c} + \left(f_{a}\wedge g_{b}\right)\wedge h_{c-1} \\ &+ \left(f_{a}\wedge g_{b}\right)\wedge h_{c} \\ &= f_{0}\wedge \left(g_{0}\wedge h_{0}\right) \\ &+ \ldots \\ &+ f_{a}\wedge \left(g_{b}\wedge h_{c}\right) + f_{a}\wedge \left(g_{b-1}\wedge h_{c} + g_{b}\wedge h_{c-1}\right) \\ &+ f_{a}\wedge \left(g_{b}\wedge h_{c}\right) \\ &= \left(u \sin g \ \text{the associativity and distributivity of }\wedge\right) \\ &= \int_{0}\wedge \gamma_{0} \\ &+ \ldots \\ &+ f_{a-1}\wedge \gamma_{b+c} + f_{a}\wedge \gamma_{b+c-1} \\ &+ f_{a}\wedge \gamma_{b+c} + f_{a}\wedge \gamma_{b+c-1} \\ &+ f_{a}\wedge \gamma_{b+c} + f_{a}\wedge \gamma_{b+c-1} \\ &+ f_{a}\wedge \gamma_{b+c} + f_{a}\wedge \gamma_{b} \\ &= \left(\sum_{i}f_{i}\right)\wedge \left(\sum_{p}g_{j}\wedge h_{k}\right)\right) \\ &= \left(\sum_{i}f_{i}\right)\wedge \left(\sum_{p}g_{j}\wedge h_{k}\right)\right) \\ &= \left(\sum_{i}f_{i}\right)\wedge \left(\sum_{p}g_{j}\wedge h_{k}\right)\right) \end{split}$$

Thus $\mathcal{A}^{\bullet}(V)$ is an associative algebra.

b)

$$\dim(\mathcal{A}^k(V)) = \begin{cases} \binom{n}{k} & 0 \le k \le n \\ 0 & k > n \end{cases}$$

$$\implies \dim(\mathcal{A}^{\bullet}(V)) = \sum_{k=0}^{n} \binom{n}{k} = 2^n$$

4

Problem 6

We need to identify the set $\Omega^k(M)$ of differential k-forms on M with the space of smooth functions that map M to the set of alternating k-tensors on \mathbb{R}^d .

As was discussed in the lectures, we can think of each element ω in $\Omega^k(M)$ as a map from M to $\mathcal{A}^k(T_pM)$, which maps a point on a manifold to an alternating k-tensor on the tangent space of the manifold point. Thus if we can show that the tangent space of a point in $M = \mathbb{R}^d$ is simply \mathbb{R}^d itself, then we have shown what has been asked.

For any point $p \in M = \mathbb{R}^d$ we can consider the identity mapping $\alpha : \mathbb{R}^d \to \mathbb{R}^d$ defined simply as $\alpha(p) = p$. This mapping satisfies all the necessary requirements to be a primitive coordinate patch for M. Thus, the tangent space at a point p is simply $T_pM = \operatorname{im}(D\alpha(p)) = \operatorname{im}(\mathbf{1}_{d\times d}) = \mathbb{R}^d$.

Thus any element of $\Omega^k(M)$ can be identified as a smooth function mapping M to $\mathcal{A}^k(\mathbb{R}^d)$.