MAU23206: Calculus on Manifolds
Homework 3 due 18/02/2022

Ruaidhri Campion
19333850
JS Theoretical Physics

Problem 1

a)

Below is the plot of {(z,y) € R?|y? =2 — 2} for z € [-1,2].
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Since this is simply the disjoint union of two sets which are clearly manifolds, this set is a manifold.

b)
Below is the plot of {(z,y) € R?|y? = 2® — 3z + 2} for z € [0,2].

From the plot, it is clear that there is a self-intersection at the point (1,0), as

lim Va? —32z+2= lim va?—-3z+4+2= lir§1+—\/x3—3x—|—2: lim —v23 —324+2=/(-1)3—-3(-1)+2=0.
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Excluding the point (1,0) from T would make it a manifold, as then everywhere else a close enough zoom
of the set represents R!.



c)
We can assume that, for T to be self-intersecting, that 32 must have a double root at some point p and
a signle root at q.

@® +ax+b=(z—p)(x—q
=2 +2(—qg—2p)+2 (2pg+p?) —p’q

—q¢—2p=0 = q¢=—2p
a=2pq+p — a=-3p?
bz—pzq :>b:2p3

Thus if (a,b) are of the form (—3p?,2p?) then the graph of T self-intersects and thus is not a manifold,
and so for T to be a manifold it cannot be in this form.

2.

2
Let f(Z) = r? — (R - m) — 2% Thus T = {(x,y,2) € R*| f(F) = 0}. This set is simply the
boundary of the “filled-in” torus

T = {(x,y,z) € R3] (R— \/172—|—y2)2—|—22 §r2} = {(z,y,2) e R®| f(Z) >0} .

Thus if we can show that ¥ is a manifold with boundary, then its boundary T must be a manifold without
boundary.
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Df(Z) only has rank 0 if & = 0, however 0 ¢ T and so the rank of D f(&) is always 1. Therefore T is a
manifold with boundary T, and so T is a manifold without boundary.

3.

Let p € M be given, and a coordinate patch « that meets the required conditions such that a(zg) = p.
Consider the subset of the geometric tangent space defined as

GpyM = {UER”

d
ny:]R—>Msmooth:vz—’y and y(0) =p ;.
dt |,

Pick a « that meets the above conditions and consider the corresponding v = ilTZ . We then have
t=0

that v € im Da(z). For any arbitrary element v/ € im Da(z) we can rotate and scale  to obtain a

new 7’ that is still smooth and meets the relevant conditions to obtain the corresponding v’ = dd"f

t=0
we can

Similarly, given a 7" that meets the relevant conditions and the corresponding v = % ,

easily choose a vector w such that Da(xg)w = v”. Thus the spaces coincide.

The same cannot necessarily be said for a manifold with boundary, however. Given a boundary point
of M and a ~ that meets the relevant conditions, we will not be able to find a w as before, as im Da(xg)
does not include vectors “away from” the boundary, yet a v can provide these vectors.



4.
a)

Let p € M be given. Then we have a coordinate patch a : R — M that meets the required conditions
such that a(zg) = p for some zo € RY. We then have that Da(zg) : R — R" is smooth and has a
continuous inverse whose derivative has rank d. Let v € T,M be given such that Da(zo)yo = v for
some yo € R Thus, § : R4 — R defined as B(x,y) = (a(z), Da(z)y) for z,y € R? is also a
coordinate patch for the point (p,v) as it is a composition of two functions that meet the coordinate
patch requirements, and (7o, y0) = (p,v). Since v € T,M C R" then 3 maps from R?? to TM, and so
TM is a manifold of dimension 2d.

b)

Df : TM — TN is defined as Df(p,v) = (f(p), Df(p)v). By definition, f is smooth, and so f(p) and
Df(p) are both defined. Therefore, f(p) and Df(p)v are both well-defined, and so Df is a composition
of smooth functions and is thus smooth.

c)

(D(go f))(p,v) = ((g° f)p), (D(go f))p)v)
= (9(f(p)), Dg(f(p))Df(p)v) (by the chain rule)
= Dy(f(p), Df(p)v)
= Dg(Df(p,v))
= (Dgo Df)(p;v)

5.

Statement 1. Let f: VF = R, g: V! = R, and h: V™ — R be tensors. Define the tensor product ®
and the k + 1 tensor f ® g : RFt! 5 R by

(fRa)(Vi, o, Vi) = F(Vi, o s V) - 9(Vig1, - - o Viegr)-
1 fe(geh)=(f®g)®h.
2. Nf)@g=XA(fog) =fo(\g).

3 (f+9)@h=fRh+g®h,
ha(f+g)=hof+h®g.

4. eliin) — el @ | @ eln.
Proof. Denote v; € Vi =V x...xV, with 1 <i < j.

1.
(f@@@h)(vi, s Vigiam) = F(Vis o, Vi) - (0(Vit1s -+ o Ve) - M(VEL1415 -+ o Vietitm)
( (Vl, ce ,Vk) . g(Vk+1, ce 7vk+l)) . h(vk-',-l-&-la ce avk+l+m)
((f®g)®h>(v17"'7vk+l+m)
2.
(A @g)(viseews Vi) = A (Vi Vi) 9(Vit 1, -+ Vi)
=A(f(Visee s Vi) - 9(VEt1s -5 Vigl))
=Af®g) (v, s Vit)
also = f(vi,..., Vi) - (Ag(Vis1, - Viy))

:f®(/\g)(vl,~--7v;c+z)



3. Let k=1

(f+9)@h(vi,oo o, Vigm) = (f +9) Vi, Vi) - A(Vit1s - - o5 Vierm)
=(f(viy.o s vE) +F9(Viy ooy V) - A(VEt1, - o Viedm)
=f(viy.o s V) - A(Vit1, oo, Vierm) F 9(Vi, ooy VE) c A(VEt1, - ooy Vietm)
=(f@h)(Vi, s Viym) (@@ R)(Vi, o, Vierm)
=(f@h+g®@h)(Vi,. ., Vitm)

h(vi,oo s Vi) - (f + 9)(Vint1, -+, Vingk)
=h(vi,.. s Vi) - (F (Vi1 - s Vintk) F 9Vt 1, -« - Vintk )
h(viyeo s vim) f(Vingts oo o s Vinak) F (Vi oo o3 Vim) - (Vg 1y« -+, Vintk)
h® (v, s Vinak) + (A ® g)(Vi, .o, Vinak)
h@ f+h®g) (Vi o, Vintk)

e(il"'”i”)(vl, V) =€ (vy) e (vy)

= (" ®@...®@e")(Vi,...,Vp)

O
Statement 2. Define the averaging operator A : LF(V) — LE(V) by
Af = (sgno) f°,
€Sk
where f is a k-tensor on V.
1. A is linear.
2. Af € AR(V).
3. feAR(V) = Af=1k!f.
Proof. 1. f — f9 islinear, and so A must also be linear as it is a linear combination of linear functions.
2.
(AT =Y (seno) (f)"
€Sk
= > (sgno) (sgn7)’ f7°
oESk
= (sgn7) Z (sgnto) f77
€Sk
= (sgn7) Af
3. Let f be an alternating tensor.
Af =Y (seno) f°
€Sk
= > (sgno)(sgno) f
o€Sk
= Z f
€Sk
=k!'f
O



Statement 3. Let A : V — W be a linear map, and f € LF(W). Define the dual transformation
A% LEW) — LF(V) by

(A" fY(vi,...,vE) = f(Avy, ..., Avy).
1. A* is linear.
2. A*(foh)=A*"f® A*h for h € L(W).
3. (AB)* = B*A* for a linear map B : U — V.
Proof. 1. Let g € LF(W).

(A (af4+b9)(vi,...,vi) =(af+bg)(Avy,..., Avy)
=a f(Avi,..., Avg) + bg(Avy, ..., Avy)
=a A" f(T(v1),...,A(vg)) +bA*g(T(v1),..., A(Vk))
=(aA f+bA"g)(vi,...,Vk)

2.
A*(f ® h)(V, . ,VkJrl) = (f X h)(AVl, Cey Avk+l)
= f(Avla ceey Avk) : h(AVk+1a ceey Avk+l)
=A"f(v,...,ve)  A"W(AViya, ..., Aviy)
— (ATf @ ARV, ., vis)
3.

(AB)*f(v1,...,vg) = f(ABvy,...,ABvy)
= A*f(Bvy,...,Bvg)
= B*A*f(vla s ,Vk)



