MAU23206: Calculus on Manifolds Homework 2 due 11/02/2022

Ruaidhrí Campion 19333850 JS Theoretical Physics

Problem 1

(a)

(b)

$$\alpha_2^{-1} \circ \alpha_1(s) = \alpha_2^{-1} \left(\frac{2s}{s^2 + 1}, \frac{s^2 - 1}{s^2 + 1} \right)$$
$$= \frac{\frac{2s}{s^2 + 1}}{1 + \frac{s^2 - 1}{s^2 + 1}}$$
$$= \frac{2s}{s^2 + 1} \frac{s^2 + 1}{2s^2}$$
$$\alpha_2^{-1} \circ \alpha_1(s) = \frac{1}{s}$$

(c)

Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined as $f(\vec{x}) = 1 - ||\vec{x}||$. Consider $\vec{p} \in S^1$. Then $f(\vec{p}) = 0$. Since $Df(\vec{x}) = \begin{pmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} \end{pmatrix} = \begin{pmatrix} -2x_1 & -2x_2 \end{pmatrix}$ and $\vec{p} \neq \vec{0}$ then $Df(\vec{p})$ has rank 1. Then there must exist an index i such that $\frac{\partial f}{\partial x_i}(\vec{p}) \neq 0$. We can define two functions $F_1, F_2: \mathbb{R}^2 \to \mathbb{R}^2$ defined as $F_1((x_1, x_2)) = (f(\vec{x}), x_2)$ and $F_2((x_1, x_2)) = (x_1, f(\vec{x}))$. The derivatives at \vec{p} of these functions are given by $DF_1(\vec{p}) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(\vec{p}) & 0 \\ \frac{\partial f}{\partial x_2}(\vec{p}) & 1 \end{pmatrix}$ and $DF_2(\vec{p}) = \begin{pmatrix} 1 & \frac{\partial f}{\partial x_1}(\vec{p}) \\ 0 & \frac{\partial f}{\partial x_2}(\vec{p}) \end{pmatrix}$, which are non singular for $p_1 \neq 0$ and $p_2 \neq 0$, respectively. Then by the inverse function theorem there exists an open neighbourhood $A_{1,2}$ of \vec{p} in \mathbb{R}^n and a set $B_{1,2}$ open in \mathbb{R}^n such that $F_{1,2}|_{A_{1,2}}: A_{1,2} \to B_{1,2}$ is a diffeomorphism. Setting $\alpha_{1,2} = F_{1,2}^{-1}|_{A_{1,2}}$ gives the required coordinate patches for \vec{p} , with α_1 covering all points where $p_1 \neq 0$ and α_2 covering all points where $p_2 \neq 0$.

Problem 2

(a)

Consider U = [0, 1), V = [0, 1), and $\alpha : U \to V$ defined as $\alpha(x) = x$. Clearly, U is open in \mathbb{H}^1 , V is open in I, α is smooth, α and α^{-1} are continuous, and $D\alpha(x) = 1$ for all $x \in U$. Now consider U' = [0, 1), V' = (0, 1], and $\alpha' : U' \to V'$ defined as $\alpha'(x) = 1 - x$. Clearly, U' is open

Now consider U' = [0, 1), V' = (0, 1], and $\alpha' : U' \to V'$ defined as $\alpha'(x) = 1 - x$. Clearly, U' is open in \mathbb{H}^1 , V' is open in I, α' is smooth, α' and α'^{-1} are continuous, and $D\alpha'(x) = -1$ for all $x \in U$. Thus I is a 1-manifold in \mathbb{R}^1 .

(b)

If $I \times I$ was a 2-manifold in \mathbb{R}^2 then its boundary must be a 1-manifold without boundary. However, the boundary of $I \times I$ is similar to I itself, which is a manifold with boundary. Thus, $I \times I$ cannot be a 2-manifold.

Problem 3

It is clear that $K_i \subset K_{i+1}$, since $B_i(\vec{0}) \subset B_{i+1}(\vec{0})$ and $B_{2^{-i}}(\vec{x}) \supset B_{2^{-i-1}}(\vec{x})$ for any $\vec{x} \in A^c$. Let $k \in \partial(K_{i+1})$. If $k \in \partial(\overline{B_{i+1}(\vec{0})})$ then $k \notin \overline{B_i(\vec{0})} \supset K_i$. If $k \in \partial(\overline{B_{2^{-i-1}}(\vec{x})})$ for some $\vec{x} \in A^c$ then $k \in B_{2^{-i}} \not\subset K_i$. Therefore no boundary point of K_{i+1} is also a point of K_i , and so $K_i \subset \operatorname{int}(K_{i+1})$.

Problem 4

Consider the composition $\delta \circ \gamma \circ \beta \circ \alpha$, where the functions are defined as

$$\alpha(\vec{x}) = ||\vec{x}||^2 = \sum_{i=1}^n x_i^2$$
 $\beta(x) = x - 1$ $\gamma(x) = \frac{1}{x}$ $\delta(x) = e^x$.

Then we can write φ as

$$\varphi(\vec{x}) = \begin{cases} \delta(\gamma(\beta(\alpha(\vec{x})))) & \text{if } ||\vec{x}|| < 1\\ 0 & \text{otherwise.} \end{cases}$$

Since each of the functions α , β , γ , δ are smooth on the relevant domains then their composition is also smooth by the chain rule. Thus φ is infinitely differentiable at all points where $||\vec{x}|| \neq 1$. However, since φ and its derivatives tend to 0 as $||\vec{x}||$ tends to 1, then φ is also infinitely differentiable at $||\vec{x}|| = 1$, and thus φ is smooth.

Problem 5

Let $\varepsilon > 0$ be given. Consider the sets $U(\vec{x}) = \{\vec{y} \in A \mid ||f(\vec{y}) - f(\vec{x})|| < \varepsilon\}$ for points $\vec{x} \in A$. The union of these sets for all $\vec{x} \in A$ is equal to A and so we can consider a partition of unity with $\{\phi_i\}$ where $S_i \subseteq U(\vec{x}_i)$ for some $\vec{x}_i \in U(\vec{x})$. Let $g(\vec{x}) = \sum_i \phi_i(\vec{x}) f(\vec{x}_i)$, which is clearly smooth as it is a linear combination of smooth functions. We then have

$$\begin{aligned} |f(\vec{x}) - g(\vec{x})|| &= \left| \left| f(\vec{x}) \sum_{i} \phi_{i}(\vec{x}) - \sum_{i} \phi_{i}(\vec{x}) f(\vec{x}_{i}) \right| \right| \\ &\leq \sum_{i} \phi_{i}(\vec{x}) \left| |f(\vec{x}_{i}) - f(\vec{x})| \right| \\ &< \sum_{i} \phi_{i}(\vec{x}) \varepsilon \\ &= \varepsilon, \end{aligned}$$

as required.