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We can rearrange the given relationships as follows to result in an expression for sin θ as follows:

nλ = 2d sin θ

=⇒ sin θ =
nλ

2d

d =
2π

||⃗k|||

=⇒ sin θ =
nλ||⃗k||
4π

k⃗ = h⃗b1 + k⃗b2 + l⃗b3

=⇒ sin θ =
nλ

√
h2b21 + k2b22 + l2b23

4π

For a BCC lattice we have that ||⃗b1|| = ||⃗b2|| = ||⃗b3|| = a, and likewise for an FCC we have ||⃗b1|| =
||⃗b2|| = ||⃗b3|| = 3a

2 . Thus if we denote c2 ≡ b21 = b22 = b23, where c is either a or 3a
2 , then the above

expression reduces to

sin θ =
nλc

√
h2 + k2 + l2

4π
.

As we do not know λ or c, we can take the ratio of the values of sin θ for successive peaks. Assuming
monochromatic radiation and first-order diffraction, this leads to

sin θi+1

sin θi
=

√
h2
i+1 + k2i+1 + l2i+1

h2
i + k2i + l2i

,

where θi and (hi, ki, li) correspond to the diffraction angle and Miller indices of the ith peak.
For a BCC structure, we have that peaks only occur whenever h+ k + l is an even number. For an

FCC structure, we have that peaks only occur whenver h, k and l are of the same parity. We can thus
deduce the possible values of h2 + k2 + l2 for each structure as follows:

BCC: h2 + k2 + l2 = 12 + 12 + 02, 22 + 02 + 02, 22 + 12 + 12, 22 + 22 + 02,

32 + 12 + 02, 22 + 22 + 22, 32 + 22 + 12, 42 + 02 + 02, . . .

= 2, 4, 6, 8, 10, 12, 14, 16, . . .

=⇒

√
h2
i+1 + k2i+1 + l2i+1

h2
i + k2i + l2i

= 1.414, 1.225, 1.155, 1.118, 1.095, 1.080, 1.069

FCC: h2 + k2 + l2 = 12 + 12 + 12, 22 + 02 + 02, 22 + 22 + 02, 32 + 12 + 12,

22 + 22 + 22, 42 + 02 + 02, 33 + 32 + 12, 42 + 22 + 02, . . .

= 3, 4, 8, 11, 12, 16, 19, 20, . . .

=⇒

√
h2
i+1 + k2i+1 + l2i+1

h2
i + k2i + l2i

= 1.155, 1.414, 1.173, 1.044, 1.155, 1.090, 1.026
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From the figure, the following values were found:

2θ = 23◦, 27◦, 39◦, 46◦, 48◦, 56◦, 63◦, 70◦

=⇒ sin θi+1

sin θi
= 1.171, 1.430, 1.171, 1.041, 1.154, 1.113, 1.098

≈ 1.155, 1.414, 1.173, 1.044, 1.155, 1.090, 1.026

The calculated values of sin θi+1

sin θi
most closely resemble the allowed values of

√
h2
i+1+k2

i+1+l2i+1

h2
i+k2

i+l2i
for the FCC

structure, and so we can deduce that the data corresponds to an FCC structure.

Q2

From the attached diagram at the end, the distance between atomic steps is simply 4 times the diagonal
of the base of a unit cell. Since tungsten has a BCC structure, each unit cell of tungsten has two atoms.
Thus the volume of a unit cell is V = 2m

ρ , where m is the mass of a tungsten atom. The length of each

side of the unit cell is thus L = V
1
3 =

(
2m
ρ

) 1
3

, and so the diagonal along the face of the unit cell is

L
√
2 =

√
2
(

2m
ρ

) 1
3

. We therefore have

d = 4 · L
√
2

= 4
√
2

(
2m

ρ

) 1
3

= 4
√
2

(
2 · 3.0527348× 10−22 g

19.25 g cm−3

) 1
3

= 1.7906× 10−7 cm

d = 17.906 Å

Q3

a)

Classical: ∆E =

∫ Tf

Ti

Cv dT Quantum: ∆E =

∫ Tf

Ti

Cv dT

=

∫ 10 K

0 K

3RdT =

∫ 10 K

0 K

dT 9NkB

(
T

θD

)3 ∫ xD

0

dx
x4ex

(ex − 1)
2

= 30 K · 8.3145 J K−1 ≈ 12π4R

5θ3D

∫ 10 K

0 K

T 3 dT

(using the low-temperature limit as discussed in class)

= 249.435 J =
12π4

5
· 8.3145 J K−1

(428 K)3
· (10 K)4

4

= 0.0620 J

As can be seen, the calculated required energies differ by several orders of magnitude depending on if the
system is treated classically or quantum mechanically. The classical regime is only somewhat accurate
for high temperatures, which is not the case for a temperature change from 0 K to 10 K, and so we can
deduce that the answer obtained using quantum mechanical expressions is far more accurate.
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b)

Classical: ∆E =

∫ Tf

Ti

Cv dT

=

∫ 300 K

0 K

3RdT

= 900 K · 8.3145 J K−1

= 7483.05 J

Quantum: ∆E =

∫ Tf

Ti

Cv dT

=

∫ 300 K

0 K

dT 9NkB

(
T

θD

)3 ∫ xD

0

dx
x4ex

(ex − 1)
2

=
9R

θ3D

∫ 300 K

0 K

∫ θD
T

0

T 3x4ex

(ex − 1)
2 dx dT

=
9R

θ3D

[∫ ∞

θD
300 K

∫ θD
x

0 K

T 3x4ex

(ex − 1)
2 dT dx+

∫ θD
300 K

0

∫ 300 K

0 K

T 3x4ex

(ex − 1)
2 dT dx

]
(switching the order of integration by inspection of the graph of x against T (diagram at end))

=
9R

θ3D

[∫ ∞

θD
300 K

θ4Dex

4 (ex − 1)
2 dx+

∫ θD
300 K

0

(300 K)4x4ex

4 (ex − 1)
2 dx

]

=
9R

4

[
θD

∫ ∞

exp
(

θD
300 K

)
−1

du

u2
+

(300 K)4

θ3D

∫ θD
300 K

0

x4ex

(ex − 1)
2 dx

]

=
9R

4

−θD
u

∣∣∣∣∞
exp

(
θD

300 K

)
−1

+
(300 K)4

θ3D

∫ θD
300 K

0

x4ex

(ex − 1)
2 dx


=

9 · 8.3145 J K−1

4

[
428 K

e
428 K
300 K − 1

+
(300 K)4

(428 K)3

∫ 428 K
300 K

0

x4ex

(ex − 1)
2 dx

]
≈ 4223.38 J (using Mathematica)

Again, the classical and quantum answers differ by a significant amount, due to the fact that the steps
used to calculate the classical energy assumes that the heat capacity is a constant 3R, which is not the
case. These values are on the same order of magnitude however, unlike the 0 K to 10 K case, due to the
fact that the classical approach is more applicable for higher temperatures. However, the temperature
change is still not large enough to warrant a classical approach, and so yet again the quantum mechanical
expressions are more accurate.
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Q4

Denote by n the number of electrons in the Fermi sphere, and V the spatial volume of the system.

dn =
V

h3
d3p⃗

n =

∫
(degeneracy)

V

h3
d3p⃗

=
2V

h3

∫
p2 sin θ dp dθ dϕ

=
2V

h3

∫ 2π

0

dϕ

∫ π

0

sin θ dθ

∫ pF

0

p2 dp

=
2V

h3
· 2π · 2 · p

3
F

3

=
πV

3

(
2h

2πh

)3

k3F (p = ℏk, ℏ ≡ h
2π )

NZV =
V

3π2
k3f (n = NZV )

=⇒ kF =
3
√
3π2NZ

We can derive a similar expression for the 2-D case.

dn =
A

h2
d2p⃗

n =

∫
(degeneracy)

A

h2
d2p⃗

=
2A

h2

∫
p dp dφ

=
2A

h2

∫ 2π

0

dφ

∫ pF

0

p dp

=
2A

h2
· 2π · p

2
F

2

= 2πA

(
h

2πh

)2

k2F

NZA =
A

2π
k2F

=⇒ kF =
√
2πNZ

Since N is simply 1
a2 where a is the side length of a unit square in the square lattice, we have that

kF =
√
2πZ
a . For Z = 1, 2, 3, 4, we thus have

kF =

√
2π

a
,

√
4π

a
,

√
6π

a
,

√
8π

a

=

√
2

π

π

a
,

2√
π

π

a
,

√
6

π

π

a
, 2

√
2

π

π

a

≈ 0.798
π

a
, 1.128

π

a
, 1.382

π

a
, 1.596

π

a

Writing the radii as factors of π
a simplifies the construction greatly, as the width of the first Brillouin

zone is π
a . Attached is the diagram of the Fermi surfaces for a nearly free electron for Z = 1, 2, 3, 4, and

the corresponding first four Brillouin zones.
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