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The electric field E generated by a point charge g is
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2.

Writing r = |Z — 7’| gives us

The divergence theorem gives us
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We also have that

which vanishes when r # 0. Since V? (%) is 0 when r # 0 yet we get a finite result when integrating it over any
volume containing » = 0, we can express it as a delta function as
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We can thus calculate V2® as
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and so ®(Z) is a solution of the Poisson equation.
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Since the volume does not contain any charges, the first integral of the potential ®(Z) vanishes as the charge
distribution p(z') is 0 inside the volume. For a general point & this gives us
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If we now want to consider ®(Zy), we must evaluate the RHS of this expression at R = Ry, as the surface is

simply the sphere of radius Ry centred at xy. We can write the first term in the integral as
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Since we are concerned with the potential at the centre of the sphere over which we are integrating, the normal
vector will always be pointing out of the sphere, i.e. % = -2 Thus the second term becomes
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Using the divergence theorem, the first term can be evaluated as
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We thus result in
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and so we get the desired result
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