MAU11102: Linear Algebra II
Homework 6 due 13/03/2020

Ruaidhri Campion
19333850
Theoretical Physics

I have read and I understand the plagiarism provisions in the General Regula-
tions of the University Calendar for the current year, found at
http://www.tcd.ie/calendar.

I have completed the Online Tutorial in avoiding plagiarism ‘Ready, Steady,
Write’, located at http://tcd-ie.libguides.com/plagiarism/ready-steady-write.

Signed
Date
Problem 1
(1)

t =0, t = 1 are solutions to the characteristic polynomial

= A =0, 1 are the eigenvalues of A.
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We need to find generalised eigenvectors to make our Jordan basis,

as the nullity of A — I is too small. Let B=A — I.
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= ker(B?) = ker(B?)
We can pick a vector in ker(B?) that does not exist in kerB and make a Jordan chain from

Av and v. These vectors, along with a vector in kerB, will form Jordan blocks for A = 1.
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Then a Jordan basis of A = {«, Bv,v, 5}
1 0 1 0
B P 1 P —9
N L 1t Lo [ 1
1 1 0 0
(2)
J = Ji(0)® Jo(1) @ Ji(1)
0 0 0O
o110
o 0 0 1 O
0 0 0 1



We can also use the fact that J = M ~YAM, where M is made from the Jordan basis vectors of A.
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Problem 2
(1)
t—1 -1 ) )
det(tI — A) = 1 i_3 =t-1DEt-3)—(-1)=t"—4t+4=(t—2)

= \ = 2 is the only eigenvalue of A.
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Pick a vector in ker(A — 2I)? = K? not in ker(4 — 2I), i.e. v = ( (1) )
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We can also use the fact that J = M 1AM, where M is made from the Jordan basis vectors of A.
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Problem 3

A =1 is an eigenvalue of multiplicity 1.

A =0 is an eigenvalue of multiplicity 4.
Thus the Jordan normal form must be made up of corresponding Jordan blocks,
ie. J=Ji(1)® ®:J;(0), for some i.
Since the rank of A is 2, then the rank of J must also be 2,

i.e. J must have exactly 2 leading entries.

This is only the case for J = Ji(1) @ J2(0) @ J1(0) & J1(0)
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The largest Jordan blocks associated with each eigenvalue are J1(1) and J2(0).
The minimal polynomial of A is a product of some factors of the characteristic
polynomial. We can raise each factor to a power corresponding to its largest
Jordan block size and get their product to get the minimal polynomial.

= p(t) =t*(t - 1)



