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Introduction

There are several applications that involve expressions of the form

J(y) =

∫ b

a
L(x, y(x), y′(x)) dx.

For instance, J(y) could represent area, length, energy and so on.

We are interested in finding the minimum/maximum values of J(y)
over all functions y(x) that satisfy some given constraints.

A function y(x) for which the minimum/maximum value is attained is
called an extremal of J(y). We shall assume that both y(x) and the
Lagrangian function L are twice continuously differentiable.

One may impose various constraints on y(x), but the most common
one amounts to specifying its values at the endpoints x = a, b. This
requires the graph of y(x) to pass through two given points.
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Directional derivative

Consider a functional of the form

J(y) =

∫ b

a
L(x, y(x), y′(x)) dx.

Its directional derivative in the direction of a function φ is defined as

J ′(y)φ = lim
ε→0

J(y + εφ)− J(y)

ε
.

This is also known as the first variation of J(y). Explicitly, one has

J ′(y)φ =

∫ b

a

(
Lyφ+ Ly′φ

′) dx.
The function φ is called a test function, if it is twice continuously
differentiable and also vanishing at the endpoints x = a, b.
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Directional derivative: Proof

The directional derivative J ′(y)φ is defined in terms of

J(y + εφ)− J(y) =

∫ b

a

(
L(x, y + εφ, y′ + εφ′)− L(x, y, y′)

)
dx.

Denote the integrand by F (ε). Then a Taylor series expansion gives

F (ε) = Ly(x, y, y
′) · εφ+ Ly′(x, y, y

′) · εφ′ + . . . ,

where the dots indicate terms which contain higher powers of ε.

Once we now combine the last two equations, we find that

J ′(y)φ = lim
ε→0

J(y + εφ)− J(y)

ε

= lim
ε→0

∫ b

a

F (ε)

ε
dx =

∫ b

a

(
Lyφ+ Ly′φ

′) dx.
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Euler-Lagrange equation

Theorem 1. Euler-Lagrange equation

Suppose that y(x) is an extremal of

J(y) =

∫ b

a
L(x, y(x), y′(x)) dx.

Then y(x) must satisfy the Euler-Lagrange equation

d

dx
Ly′ = Ly.

A solution of the Euler-Lagrange equation is also known as a critical
point of J(y). Critical points of J(y) are not necessarily extremals.

When the Lagrangian L depends on higher-order derivatives of y, the
Euler-Lagrange equation involves higher-order derivatives of L.
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Euler-Lagrange equation: Proof

Since y(x) is an extremal of J(y), it must satisfy

J ′(y)φ = 0 =⇒
∫ b

a

(
Lyφ+ Ly′φ

′) dx = 0

for every test function φ. Integrating by parts, we now get∫ b

a

(
Ly −

d

dx
Ly′

)
φdx+

[
Ly′φ

]b
a
= 0.

Since the test function φ vanishes at the endpoints, this gives∫ b

a

(
Ly −

d

dx
Ly′

)
φdx = 0

for every test function φ. According to the fundamental lemma of
variational calculus, we must thus have Ly = d

dxLy′ , as needed.
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Fundamental lemma of variational calculus

Suppose that H(x) is continuously differentiable with∫ b

a
H(x)φ(x) dx = 0

for every test function φ. Then H(x) must be identically zero.

To prove this, consider an arbitrary subinterval [x1, x2] and let

φ(x) =

{
(x− x1)

3(x2 − x)3 if x1 ≤ x ≤ x2
0 otherwise

}
.

Then φ is a test function which is positive on (x1, x2) and we have

0 =

∫ b

a
H(x)φ(x) dx =

∫ x2

x1

H(x)φ(x) dx.

If H(x) is positive/negative at a point, it must have the same sign on
some interval [x1, x2] and this is not the case by the last equation.
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Beltrami identity

Suppose that y(x) is a critical point of the functional

J(y) =

∫ b

a
L(y(x), y′(x)) dx

whose Lagrangian function L does not depend on x directly. Then

y′Ly′ − L = constant.

To prove this, one uses the Euler-Lagrange equation to find that

d

dx

(
y′Ly′

)
= y′′Ly′ + y′

d

dx
Ly′ = y′′Ly′ + y′Ly.

Since L(y, y′) does not depend on x directly, the chain rule gives

d

dx

(
y′Ly′

)
= y′′Ly′ + y′Ly =

d

dx
L.
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Example 1. Shortest path

Consider a function y(x) whose graph passes through two given
points. We wish to minimise the length of its graph

J(y) =

∫ b

a

√
1 + y′(x)2 dx.

Since L =
√
1 + y′(x)2, the Euler-Lagrange equation gives

d

dx
Ly′ = Ly = 0 =⇒ Ly′ =

y′(x)√
1 + y′(x)2

= c1.

We square both sides and then simplify to conclude that

y′(x)2 = c21 + c21y
′(x)2 =⇒ y′(x) = c2.

This shows that y(x) must be a linear function. In other words, the
shortest path between any two points is given by a line.
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Example 2. Minimal surface, page 1

Consider a function y(x) whose graph passes through two given
points. We wish to minimise the surface area of the solid which is
obtained by rotating the graph of y(x) around the x-axis, namely

J(y) =

∫ b

a
2πy(x)

√
1 + y′(x)2 dx.

Since the Lagrangian does not depend on x directly, one has

c = y′Ly′ − L =
2πy(x)y′(x)2√

1 + y′(x)2
− 2πy(x)

√
1 + y′(x)2

by the Beltrami identity. It now easily follows that

c

2π
= − y(x)√

1 + y′(x)2
=⇒ 1 + y′(x)2 =

y(x)2

a2
.
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Example 2. Minimal surface, page 2

The last equation is actually a separable equation which gives

dy

dx
=

√
y2

a2
− 1 =⇒

∫
dy√
y2 − a2

=

∫
dx

a
.

Letting y = a cosh t, we now get y2 − a2 = a2 sinh2 t, hence also∫
dx

a
=

∫
a sinh t dt

a sinh t
=

∫
dt.

Since y = a cosh t by above, we may finally conclude that

x− x0
a

= t =⇒ y = a cosh t = a cosh

(
x− x0
a

)
.

This is an equation that describes the shape of a hanging chain.
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Example 3. Brachistochrone, page 1

Consider a particle that slides along the graph of a function y(x) from
one point to another under the influence of gravity. We assume that
there is no friction and wish to minimise the overall travel time

J(y) =

∫ b

a

√
1 + y′(x)2 dx

v(y(x))
.

To find the speed v, we note that conservation of energy gives

1

2
mv2 +mgy =

1

2
mv20 +mgy0.

Assuming that v0 = 0 for simplicity, the overall travel time is then

J(y) =

∫ b

a

√
1 + y′(x)2 dx√
2g(y0 − y)

.
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Example 3. Brachistochrone, page 2

Since the Lagrangian does not depend on x directly, one has

c = y′Ly′ − L =
y′(x)2√

2g(y0 − y)
√
1 + y′(x)2

−
√
1 + y′(x)2√
2g(y0 − y)

by the Beltrami identity. We clear denominators to get

c
√

2g(y0 − y)
√
1 + y′(x)2 = −1

and then we square both sides to find that

1 + y′(x)2 =
a2

y0 − y(x)
=⇒ y′(x)2 =

a2 − y0 + y(x)

y0 − y(x)
.

This is a separable equation that can also be written as∫ √
y0 − y dy√
a2 − y0 + y

=

∫
dx.
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Example 3. Brachistochrone, page 3

Letting y0 − y = a2 sin2 θ gives a2 − y0 + y = a2 cos2 θ, hence

−
∫
dx = −

∫ √
y0 − y dy√
a2 − y0 + y

=

∫
a sin θ · 2a2 sin θ cos θ dθ

a cos θ
= a2

∫
(1− cos(2θ)) dθ.

Once we now simplify the integrals, we may finally conclude that

x0 − x = a2
(
θ − 1

2
sin(2θ)

)
=
a2

2
(φ− sinφ) ,

y0 − y = a2 sin2 θ =
a2

2
(1− cos(2θ)) =

a2

2
(1− cosφ) ,

where φ = 2θ. These are the parametric equations of a cycloid.
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Case 1. Fixed boundary conditions

Suppose that we wish to find the extremals of

J(y) =

∫ b

a
L(x, y(x), y′(x)) dx

subject to given boundary conditions y(a) = y0 and y(b) = y1.

This is the standard variational problem which implies that∫ b

a

(
Ly −

d

dx
Ly′

)
φdx+

[
Ly′φ

]b
a
= 0

for every test function φ. Since the boundary terms vanish, one can
find the possible extremals by solving the Euler-Lagrange equation

d

dx
Ly′ = Ly.

Thus, we get a second-order ODE subject to two boundary conditions.
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Case 1. Example

As a simple example, consider the functional

J(y) =

∫ 1

0
y′(x)2 dx

subject to the boundary conditions y(0) = 1 and y(1) = 3.

In this case, the Euler-Lagrange equation gives

d

dx
Ly′ = Ly =⇒ 2y′′(x) = 0 =⇒ y(x) = ax+ b.

To ensure that the boundary conditions hold, we must have

1 = y(0) = b, 3 = y(1) = a+ b.

Thus, the only possible extremal is given by y(x) = 2x+ 1.
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Case 2. Variable boundary conditions

Suppose that we wish to find the extremals of

J(y) =

∫ b

a
L(x, y(x), y′(x)) dx

when no boundary conditions are specified for y(a) and y(b).

Using the same approach as before, one finds that∫ b

a

(
Ly −

d

dx
Ly′

)
φdx+

[
Ly′φ

]b
a
= 0

for every function φ. This obviously includes all test functions, so the
Euler-Lagrange equation remains valid, but we must also have

Ly′ = 0 when x = a, b.

These conditions are known as the natural boundary conditions.
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Case 2. Example

As a typical example, consider the functional

J(y) =

∫ 1

0

(
y′(x)2 + y(x)y′(x)− 4y(x)

)
dx.

Using the Euler-Lagrange equation, one finds that

d

dx
Ly′ = Ly =⇒ 2y′′ + y′ = y′ − 4

=⇒ y(x) = −x2 + ax+ b.

In view of the natural boundary conditions, we must also have

0 = Ly′ = 2y′ + y = 2(a− 2x)− x2 + ax+ b

when x = 0, 1. This gives 2a+ b = 0 = 3a+ b− 5, so we easily find
that a = 5 and b = −10. In other words, y(x) = −x2 + 5x− 10.
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Case 3. Several unknown functions

Suppose that we wish to find the extremals of

J(y, z) =

∫ b

a
L(x, y(x), y′(x), z(x), z′(x)) dx

subject to given boundary conditions, say

y(a) = y0, y(b) = y1, z(a) = z0, z(b) = z1.

Viewing J(y, z) as a function of one variable, we must then have

d

dx
Ly′ = Ly,

d

dx
Lz′ = Lz.

In particular, one can find the extremals by solving a system of two
second-order equations subject to four boundary conditions.
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Case 3. Example

As a typical example, consider the functional

J(y, z) =

∫ 1

0

(
y′(x)z′(x) + y(x)2

)
dx

subject to the conditions y(0) = z(0) = 0 and y(1) = z(1) = 1.

The corresponding Euler-Lagrange equations are then

d

dx
Ly′ = Ly =⇒ z′′ = 2y,

d

dx
Lz′ = Lz =⇒ y′′ = 0.

Solving the latter gives y = ax+ b, hence also y = x. Solving the
former, we now get z′′ = 2x, so z = 1

3x
3 + cx+ d = 1

3(x
3 + 2x).
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Case 4. Isoperimetric constraints

Suppose that we wish to find the extremals of

J(y) =

∫ b

a
L(x, y(x), y′(x)) dx

subject to the boundary and integral constraints

y(a) = y0, y(b) = y1,

∫ b

a
M(x, y(x), y′(x)) dx = c.

Let us denote by I(y) the integral that appears in the last equation.
Then the extremals of J(y) are either critical points of I(y) or else
critical points of J(y)− λI(y) for some Lagrange multiplier λ ∈ R.
In particular, one has to solve the Euler-Lagrange equation for two
different Lagrangians, namely M and also L− λM .

21 / 43



Case 4. Example, page 1

We determine the possible extremals of

J(y) =

∫ π

0
y′(x)2 dx

subject to the boundary and integral constraints

y(0) = y(π) = 0,

∫ π

0
y(x) sinx dx = 1.

Let us denote by I(y) the integral that appears in the last equation.
Its critical points must satisfy the Euler-Lagrange equation

L = y(x) sinx =⇒ d

dx
Ly′ = Ly =⇒ 0 = sinx

and this means that I(y) has no critical points at all.
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Case 4. Example, page 2

To find the critical points of J(y)− λI(y), we note that

L = y′(x)2 − λy(x) sinx =⇒ d

dx
Ly′ = Ly

=⇒ 2y′′ = −λ sinx.

Integrating this equation twice, we conclude that

y′(x) =
λ

2
cosx+ a =⇒ y(x) =

λ

2
sinx+ ax+ b.

Since y(0) = y(π) = 0, it is easy to check that a = b = 0. Thus, it
remains to determine λ. Using the integral constraint, we get

1 =

∫ π

0
y(x) sinx dx =

λ

2

∫ π

0
sin2 x dx =

λπ

4
.

This gives λ = 4
π , so the only possible extremal is y(x) = 2

π sinx.
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Lagrange multipliers

Theorem 2. Lagrange multipliers

Suppose that y(x) is an extremal of

J(y) =

∫ b

a
L(x, y(x), y′(x)) dx

subject to the integral constraint I(y) = c, where

I(y) =

∫ b

a
M(x, y(x), y′(x)) dx.

Then the extremal y(x) must be either a critical point of I(y) or else
a critical point of J(y)− λI(y) for some Lagrange multiplier λ ∈ R.

This theorem is closely related to the corresponding theorem for the
extrema of a function f(x, y) subject to a constraint g(x, y) = c.

24 / 43



Lagrange multipliers: Proof, page 1

Let φ,ψ be some given test functions and define f, g : R2 → R by

f(ε, δ) = J(y + εφ+ δψ), g(ε, δ) = I(y + εφ+ δψ).

We note that g(0, 0) = I(y) = c by assumption, while

gε(0, 0) = lim
ε→0

g(ε, 0)− g(0, 0)

ε
= lim

ε→0

I(y + εφ)− I(y)

ε
= I ′(y)φ.

Suppose y(x) is not a critical point of I(y). We can then find a test
function φ such that I ′(y)φ ̸= 0. According to the implicit function
theorem, we can thus find a function ε = ε(δ) with ε(0) = 0 and

c = g(ε, δ) = I(y + εφ+ δψ)

in a neighbourhood of δ = 0, namely for small enough δ.

25 / 43



Lagrange multipliers: Proof, page 2

Since y(x) is an extremal of J(y) subject to the given constraint,

f(ε, δ) = J(y + εφ+ δψ)

attains an extremum at (0, 0) subject to the constraint g(ε, δ) = c.

Using a standard calculus result, we conclude that either ∇g(0, 0) = 0
or else ∇f(0, 0) = λ∇g(0, 0) for some λ ∈ R. One may easily exclude
the former case since gε(0, 0) = I ′(y)φ ̸= 0 by above. We thus have

∇f(0, 0) = λ∇g(0, 0) =⇒ fδ(0, 0) = λgδ(0, 0)

=⇒ J ′(y)ψ = λI ′(y)ψ

for all test functions ψ, so y(x) is a critical point of J(y)− λI(y).
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Second variation

The first variation of J(y) is defined as the limit

J ′(y)φ = lim
ε→0

J(y + εφ)− J(y)

ε

and one can use a Taylor series expansion to derive the formula

J ′(y)φ =

∫ b

a

(
Lyφ+ Ly′φ

′) dx.
The second variation of J(y) is defined as the limit

J ′′(y)φ = lim
ε→0

J(y + εφ)− J(y)− εJ ′(y)φ
1
2ε

2

and one can use a Taylor series expansion to derive the formula

J ′′(y)φ =

∫ b

a

(
Lyyφ

2 + 2Lyy′φφ
′ + Ly′y′(φ

′)2
)
dx.
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Second variation: Sketch of proof

According to the definition of J(y), one has

J(y + εφ)− J(y) =

∫ b

a

(
L(x, y + εφ, y′ + εφ′)− L(x, y, y′)

)
dx.

Denote the integrand by F (ε). Then a Taylor series expansion gives

F (ε) = ε
(
Lyφ+ Ly′φ

′
)

+
ε2

2

(
Lyyφ

2 + 2Lyy′φφ
′ + Ly′y′(φ

′)2
)
+ . . . ,

where the dots indicate terms which contain higher powers of ε.

Since the linear terms correspond to the first variation J ′(y)φ, it
easily follows that the quadratic terms correspond to J ′′(y)φ.
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Necessary condition

Theorem 3. Necessary condition

If the functional J(y) attains a local minimum at the function y(x),
then we must actually have J ′′(y)φ ≥ 0 for all functions φ.

This condition resembles the second derivative test from advanced
calculus. It is closely related to the expansion

J(y + εφ) = J(y) + εJ ′(y)φ+
ε2

2
J ′′(y)φ+ . . .

and the fact that J ′(y)φ = 0 for all critical points of J(y).

It may happen that J ′′(y)φ > 0 for all functions φ, even though J(y)
has no local minimum. In particular, the given condition is necessary
but not sufficient for the existence of a local minimum.
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Necessary condition: Sketch of proof

Using the definition of J ′′(y)φ, one can write

J(y + εφ) = J(y) + εJ ′(y)φ+
ε2

2
J ′′(y)φ+

ε2

2
R(y, ε, φ)

for some remainder term R such that R(y, ε, φ) → 0 as ε→ 0.

Since y(x) is a point of a local minimum, this implies that

0 ≤ J(y + εφ)− J(y) =
ε2

2
J ′′(y)φ+

ε2

2
R(y, ε, φ)

for all small enough ε. Letting ε→ 0, we conclude that

J ′′(y)φ = lim
ε→0

(
J ′′(y)φ+R(y, ε, φ)

)
≥ 0.
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Legendre condition

Theorem 4. Legendre condition

If the functional J(y) attains a local minimum at the function y(x),
then one has Ly′y′(x, y, y

′) ≥ 0 throughout the interval [a, b].

As a simple example, consider the functional

J(y) =

∫ 1

−1
x
√
1 + y′(x)2 dx.

In this case, the Lagrangian L is easily seen to satisfy

Ly′ =
xy′(x)√
1 + y′(x)2

=⇒ Ly′y′ =
x

(1 + y′(x)2)3/2
.

Since Ly′y′ changes sign on the given interval, one finds that J(y)
has neither a local minimum nor a local maximum.
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Legendre condition: Sketch of proof, page 1

If it happens that Ly′y′ < 0 at some point, then Ly′y′ < 0 on some
interval [x0 − ε, x0 + ε] by continuity. Consider the test function

φ(x) =

{
sin3

(
π(x−x0)

ε

)
if |x− x0| ≤ ε

0 otherwise

}
.

This function is bounded for all ε > 0, but its derivative becomes
unbounded as ε→ 0. One thus expects the second variation

J ′′(y)φ =

∫ b

a

(
Lyyφ

2 + 2Lyy′φφ
′ + Ly′y′(φ

′)2
)
dx

to become negative as ε→ 0. This contradicts our previous theorem
which asserts that J ′′(y)φ ≥ 0 at a point of a local minimum.

It remains to show that J ′′(y)φ < 0 for all small enough ε > 0.
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Legendre condition: Sketch of proof, page 2

Since the Lagrangian is twice continuously differentiable, one has

J ′′(y)φ =

∫ x0+ε

x0−ε

(
Lyyφ

2 + 2Lyy′φφ
′ + Ly′y′(φ

′)2
)
dx

≤
∫ x0+ε

x0−ε

(
C1φ

2 + C2|φφ′| − C3(φ
′)2

)
dx

for some constants C1, C2, C3 > 0. Letting u = π
ε (x− x0), we get

J ′′(y)φ ≤ ε

π

∫ π

−π

(
C1 +

3πC2

ε
− 9π2C3

ε2
sin4 u cos2 u

)
du

= 2εC1 + 6πC2 −
C4

ε

for some constants C1, C2, C4 > 0 and the result now follows.
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Poincaré inequality

Suppose that φ is a test function on the interval [a, b]. Then

|φ(x)| = |φ(x)− φ(a)| ≤
∫ x

a
|φ′(y)| dy,

so one may use the Cauchy-Schwarz inequality to find that

φ(x)2 ≤
∫ x

a
dy

∫ b

a
φ′(y)2 dy = (x− a)

∫ b

a
φ′(x)2 dx.

Integrating over [a, b], we thus obtain the Poincaré inequality∫ b

a
φ(x)2 dx ≤ (b− a)2

2

∫ b

a
φ′(x)2 dx.
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Sufficient condition

Theorem 5. Sufficient condition

Suppose that y(x) is a critical point of

J(y) =

∫ b

a
L(x, y(x), y′(x)) dx

subject to the boundary conditions y(a) = y0 and y(b) = y1. Suppose
also that there exists some constant δ > 0 such that

J ′′(y)φ ≥ δ

∫ b

a
φ′(x)2 dx

for all test functions φ. Then J(y) attains a local minimum at y(x).
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Sufficient condition: Sketch of proof, page 1

We use Taylor’s theorem with remainder to write

J(y + εφ) = J(y) +
ε2

2

∫ b

a

(
Lyyφ

2 + 2Lyy′φφ
′ + Ly′y′(φ

′)2
)
dx

with the second derivatives of L evaluated at a point of the form

(x, y + tεφ, y′ + tεφ′), 0 ≤ t ≤ 1.

Since L is twice continuously differentiable, this implies that

J(y + εφ) = J(y) +
ε2

2
J ′′(y)φ

+
ε2

2

∫ b

a

(
R1φ

2 + 2R2φφ
′ +R3(φ

′)2
)
dx

for some functions R1, R2, R3 which approach zero as ε→ 0. We
now estimate the integral that appears on the right hand side.
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Sufficient condition: Sketch of proof, page 2

Let us denote the last integral by I. We then have

|I| ≤
∫ b

a

(
|R1|+ |R2|

)
φ(x)2 dx+

∫ b

a

(
|R2|+ |R3|

)
φ′(x)2 dx

and we can use the Poincaré inequality to conclude that

|I| ≤
∫ b

a
R(ε, x) · φ′(x)2 dx

for some positive function R which approaches zero as ε→ 0.

In view of our assumption on J ′′(y)φ, this implies that

J(y + εφ)− J(y) ≥ ε2

2

∫ b

a
(δ −R(ε, x)) · φ′(x)2 dx ≥ 0

for all small enough ε, so J(y) attains a local minimum at y(x).
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Sufficient condition: Example

Consider the shortest path example that corresponds to the case

J(y) =

∫ b

a

√
1 + y′(x)2 dx.

In this case, the critical points are lines, namely functions y(x) whose
derivative is constant, say y′(x) = c. One can easily check that

Ly′y′ =
1

(1 + y′(x)2)3/2
=

1

(1 + c2)3/2
= δ

for some constant δ > 0, while Lyy = Lyy′ = 0. This implies that

J ′′(y)φ =

∫ b

a
δφ′(x)2 dx,

so the sufficient condition is satisfied and J(y) has a local minimum.
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Invariance

If there is a transformation (x, y) → (x∗, y∗) such that∫ b

a
L(x, y, y′) dx =

∫ b∗

a∗

L(x∗, y∗, y
′
∗) dx∗ for all a < b,

we say that J(y) is invariant under the given transformation.

A very common example is time invariance

x∗ = x+ ε, y∗ = y.

This case arises whenever L is independent of x, for instance.

Another common example is translation invariance

x∗ = x, y∗ = y + ε.

This case arises whenever L is independent of y, for instance.
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Noether’s theorem

Theorem 6. Noether’s theorem

Suppose J(y) is invariant under a family of transformations

(x, y) −→ (x∗, y∗) = (f(x, y, ε), g(x, y, ε))

such that x∗ = x and y∗ = y when ε = 0. Then the quantity

Q = α
(
L− y′Ly′

)
+ βLy′

is independent of x whenever y(x) is a critical point of J(y) and

α =
∂x∗
∂ε

∣∣∣∣
ε=0

, β =
∂y∗
∂ε

∣∣∣∣
ε=0

.

The Beltrami identity is a very special case of this theorem.
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Noether’s theorem: Sketch of proof, page 1

We simplify the invariance condition using a Taylor series expansion
and keeping the linear terms only. This gives the identity

L(x∗, y∗, y
′
∗) = L(x, y, y′) + (x∗ − x)Lx(x, y, y

′)

+ (y∗ − y)Ly(x, y, y
′) + (y′∗ − y′)Ly′(x, y, y

′).

Let us express this identity in the more compact form

L∗ = L+∆x · Lx +∆y · Ly +∆y′ · Ly′ .

Keeping linear terms as before, we get ∆x = x∗ − x = αε and

∆y = y∗(x)− y(x) = y∗(x)− y∗(x∗) + y∗(x∗)− y(x)

= −y′(x)∆x+ βε = (β − αy′)ε.
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Noether’s theorem: Sketch of proof, page 2

We now integrate the identity above. Since x∗ = x+ αε, we have∫ b

a
Ldx =

∫ b∗

a∗

L∗ dx∗

=

∫ b∗

a∗

(
L+∆x · Lx +∆y · Ly +∆y′ · Ly′

)
dx∗

=

∫ b

a

(
L+ αε · Lx +∆y · Ly +∆y′ · Ly′ + α′ε · L

)
dx.

Rearranging terms and integrating by parts, we conclude that

0 =

∫ b

a
(αε · L)′ dx+

[
∆y · Ly′

]b
a
+

∫ b

a
∆y

(
Ly −

d

dx
Ly′

)
dx.

Here, the rightmost integral is zero by the Euler-Lagrange equation.
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Noether’s theorem: Sketch of proof, page 3

In view of our computation above, we must thus have

0 =
[
αε · L+∆y · Ly′

]b
a

=
[
αε · L+ (β − αy′)ε · Ly′

]b
a
.

Since the endpoints a, b are arbitrary, this actually means that

Q = αL+ (β − αy′)Ly′

is independent of x. Rearranging terms, we conclude that

Q = α(L− y′Ly′) + βLy′

is independent of x. This finally completes the proof.
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