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Introduction

@ There are several applications that involve expressions of the form

b
J(y) = / L(z,y(z), 4/ (z)) dr.

For instance, J(y) could represent area, length, energy and so on.

o We are interested in finding the minimum/maximum values of J(y)
over all functions y(z) that satisfy some given constraints.

e A function y(z) for which the minimum/maximum value is attained is
called an extremal of J(y). We shall assume that both y(z) and the
Lagrangian function L are twice continuously differentiable.

@ One may impose various constraints on y(x), but the most common
one amounts to specifying its values at the endpoints x = a,b. This
requires the graph of y(x) to pass through two given points.
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Directional derivative

@ Consider a functional of the form

b
I = [ Leyle).y () da.
a
@ Its directional derivative in the direction of a function ¢ is defined as

e—0 )

This is also known as the first variation of J(y). Explicitly, one has

b
J (y)p = / (Ly<p + Ly/(p/) dx.

@ The function ¢ is called a test function, if it is twice continuously
differentiable and also vanishing at the endpoints z = a, b.
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Directional derivative: Proof

@ The directional derivative J'(y)¢p is defined in terms of

b
J(y+ep) = J(y) = / (L(w, y+ep,y +e¢’) — Llz,y, y’)) da.
@ Denote the integrand by F'(¢). Then a Taylor series expansion gives

F(E) = Ly(ﬂ:,y,y/) '€Q0+Ly’(x7y,yl) 'EQDI‘F ey

where the dots indicate terms which contain higher powers of ¢.

@ Once we now combine the last two equations, we find that

J(y +ep) = J(y)

/ RT
Twhe =i =
b b
. 17(6) J/" /
= lim dr = Lyp+ Ly dz.
e—=0 J, g a ( v Y )
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Euler-Lagrange equation

" Theorem 1. Euler-Lagrange equation R

Suppose that y(z) is an extremal of

b
J(y) = / Lz, y(z), 4/ (z)) d.

Then y(x) must satisfy the Euler-Lagrange equation

d
—Ly = Ly.
dzx Y,

@ A solution of the Euler-Lagrange equation is also known as a critical
point of J(y). Critical points of J(y) are not necessarily extremals.

@ When the Lagrangian L depends on higher-order derivatives of y, the
Euler-Lagrange equation involves higher-order derivatives of L.
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Euler-Lagrange equation: Proof

@ Since y(z) is an extremal of J(y), it must satisfy

b
Jl(y)so =0 — / (Lygo —+ Lylgol) dr =0

for every test function . Integrating by parts, we now get

’ L dL d L '

@ Since the test function ¢ vanishes at the endpoints, this gives

b d
/a (Ly — %Ly/) pdr=20

for every test function ¢. According to the fundamental lemma of
variational calculus, we must thus have L, = %Ly/, as needed.

6/43



Fundamental lemma of variational calculus

@ Suppose that H(x) is continuously differentiable with

b
/ H(z)p(z)dx =0

for every test function ¢. Then H(xz) must be identically zero.
@ To prove this, consider an arbitrary subinterval [z, z2] and let

(= m)P(e )  ifzy <z <o
olz) = { 0 otherwise '

Then ¢ is a test function which is positive on (z1,z2) and we have

0= / ! H () ol) di = /x m H(z)o(z) da.

If H(z) is positive/negative at a point, it must have the same sign on
some interval [z, z2] and this is not the case by the last equation.
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Beltrami identity

@ Suppose that y(z) is a critical point of the functional

b
1) = [ L)/ (@) ds
whose Lagrangian function L does not depend on x directly. Then
y'L, — L = constant.

@ To prove this, one uses the Euler-Lagrange equation to find that

d

d
e Ly =y"Ly +y'Ly,.

(v'Ly) =y"Ly +y'

Since L(y,y’) does not depend on z directly, the chain rule gives

d

d
- (y L ) =y"Ly+yLy=—L.

dx
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Example 1. Shortest path

o Consider a function y(z) whose graph passes through two given
points. We wish to minimise the length of its graph

b
J(y) = / VIt @2 dr.

e Since L = /1 + ¢/(x)?, the Euler-Lagrange equation gives

d /
A =Ly=0 = L= YO _
dx L+y'(2)

We square both sides and then simplify to conclude that

2

Y@P=cd+cdy(@)? = (@) =c.

@ This shows that y(z) must be a linear function. In other words, the
shortest path between any two points is given by a line.
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Example 2. Minimal surface, page 1

e Consider a function y(z) whose graph passes through two given
points. We wish to minimise the surface area of the solid which is
obtained by rotating the graph of y(z) around the z-axis, namely

J(y) = / 2my(x)\/1+ ¢/ (x)? du.
a
@ Since the Lagrangian does not depend on x directly, one has

2my(2)y'(x)?

c=vyL,— L=
v T+ ()

—2my(z)\/1+ ¢ (x)?

by the Beltrami identity. It now easily follows that

c y(x) . 1+y’(x)2= y(x) _

27 1 + y/($)2 CL2
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Example 2. Minimal surface, page 2

@ The last equation is actually a separable equation which gives

d 2 d d
W _ y_2_1 — / Y :/_x
dx a /42 — a2 a

2

o Letting y = acosht, we now get y? — a? = a?sinh? ¢, hence also

/dm /asmhtdt /
dt.
asinht
@ Since y = acosht by above, we may finally conclude that

r — X

T—
=t = yzacoshtzacosh( 0).
a a

This is an equation that describes the shape of a hanging chain.

11/43



Example 3. Brachistochrone, page 1

o Consider a particle that slides along the graph of a function y(x) from
one point to another under the influence of gravity. We assume that
there is no friction and wish to minimise the overall travel time

T(y) = /b V1+y(@)de

@ To find the speed v, we note that conservation of energy gives

1 2
—mv” +mgy =

5 = mv% + mgyp.

2

@ Assuming that vg = 0 for simplicity, the overall travel time is then

/de

V29(yo — y)
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Example 3. Brachistochrone, page 2

@ Since the Lagrangian does not depend on x directly, one has

y'(x)? V1+y(x)?
V29(yo —y)V1T+y' (@2 /29(y0 —y)
by the Beltrami identity. We clear denominators to get

cv/29(yo — y)V1+y (2)? = —1

and then we square both sides to find that

c=yLy—L=

2

a a® — yo + y(z)

/ 2 _

/ 2 _
1+y'(x) _—yo—y(m)

@ This is a separable equation that can also be written as

/ Vi —ydy [
Va2 —yo+y
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Example 3. Brachistochrone, page 3

2 2

o Letting yo — y = a®sin? 0 gives a® — yo + y = a® cos® 6, hence

/dx— \/yo— ydy
Va*—yo+y

_ asin@ - 2a®sin 6 cos 0 db
_/ acosf

= a? /(1 — cos(20)) db.

@ Once we now simplify the integrals, we may finally conclude that

9 1 . a? .
xo—T=a 0—55111(29) =?(g0—sm<p),

9 a? a?

Yo—y=a sin29:? (1—cos(29)):5(1—cos<p),

where ¢ = 20. These are the parametric equations of a cycloid.
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Case 1. Fixed boundary conditions

@ Suppose that we wish to find the extremals of

b
J(y) = / Lz, y(z),y (z)) de

subject to given boundary conditions y(a) = yo and y(b) = y;.
@ This is the standard variational problem which implies that

/ab (Ly - d%Ly/) o du + [LympK =0

for every test function ¢. Since the boundary terms vanish, one can
find the possible extremals by solving the Euler-Lagrange equation

d
%Ly/ == Ly.

@ Thus, we get a second-order ODE subject to two boundary conditions.
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Case 1. Example

@ As a simple example, consider the functional

1
J(y) = /0 ¥ (2)? da

subject to the boundary conditions y(0) = 1 and y(1) = 3.

@ In this case, the Euler-Lagrange equation gives

d

%Ly/ =L, = 2/'(x)=0 = vy(x)=ax+0.

@ To ensure that the boundary conditions hold, we must have
1 =y(0) =b, 3=y(l)=a+0.

Thus, the only possible extremal is given by y(z) = 2z + 1.
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Case 2. Variable boundary conditions

@ Suppose that we wish to find the extremals of

b
J(y) = / Lz, y(z), (z)) de

when no boundary conditions are specified for y(a) and y(b).

@ Using the same approach as before, one finds that

' L ClL d L ’
/a ( VT y,)¢ o+ [Lyg] =0

for every function ¢. This obviously includes all test functions, so the
Euler-Lagrange equation remains valid, but we must also have

L, =0 when x =a,b.

@ These conditions are known as the natural boundary conditions.
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Case 2. Example

o As a typical example, consider the functional

1
70) = [ (v/@F + @ @)~ 4y(a)) da.
@ Using the Euler-Lagrange equation, one finds that

d

%Ly/ =L, = 2y+y =y -4
—  y(z)=—2®+ax+b.

@ In view of the natural boundary conditions, we must also have

0=Ly =2y +y=2(a—2z)— 2> +azx+b

when x = 0,1. This gives 2a +b=0=3a + b — 5, so we easily find
that a = 5 and b = —10. In other words, y(z) = —22 + 5z — 10.
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Case 3. Several unknown functions

@ Suppose that we wish to find the extremals of

b
Tw.2) = [ Lia @)y (@), 2(a). 2 (2) do
subject to given boundary conditions, say

y(a) = Yo, y(b) = Y1, z(a) = 20, Z(b) = Z1-
o Viewing J(y, z) as a function of one variable, we must then have

d d
%Lyl - Ly, %Lzl - LZ

@ In particular, one can find the extremals by solving a system of two
second-order equations subject to four boundary conditions.
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Case 3. Example

@ As a typical example, consider the functional

1.9 = [ (V0@ +ya) do

subject to the conditions y(0) = 2(0) = 0 and y(1) = 2(1) = 1.
@ The corresponding Euler-Lagrange equations are then

d
%Ly/ = Ly — Z” = 2y,
d
TLy=L. = y'=0
T

@ Solving the latter gives y = ax + b, hence also y = x. Solving the
former, we now get 2 = 2z, so z = $a3 + cx + d = §(a® + 2z).
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Case 4. Isoperimetric constraints

@ Suppose that we wish to find the extremals of

b
J(y) = / Lz, y(z). (z)) de

subject to the boundary and integral constraints

b
y(a) = yo, y(b) = 1, / M(z,y(x),y (v))dz = c.

@ Let us denote by I(y) the integral that appears in the last equation.
Then the extremals of J(y) are either critical points of I(y) or else
critical points of J(y) — AI(y) for some Lagrange multiplier A € R.

@ In particular, one has to solve the Euler-Lagrange equation for two
different Lagrangians, namely M and also L — AM.
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Case 4. Example, page 1

@ We determine the possible extremals of
I0) = [ da
subject to the boundary and integral constraints
y(0) =y(m) =0, /07r y(z)sinzdz = 1.

@ Let us denote by I(y) the integral that appears in the last equation.
Its critical points must satisfy the Euler-Lagrange equation

d
L=y(z)sinx = %LyzzLy = (O=sinx

and this means that I(y) has no critical points at all.
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Case 4. Example, page 2

e To find the critical points of J(y) — AI(y), we note that

L= y'(sc)2 —My(z)sine = ——Ly =1L,
i

o Integrating this equation twice, we conclude that

A A
Y (x) = §cos:v+a =  y(z)= §sinx+ax+b.
Since y(0) = y(m) = 0, it is easy to check that a = b = 0. Thus, it
remains to determine A. Using the integral constraint, we get

1:/ y(a:)sinxdac:é/ siand:c:)\—W.
0 2 Jo 4
2

o This gives A = 2, so the only possible extremal is y(z) = 2 sinz.

! s
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Lagrange multipliers

~

/Theorem 2. Lagrange multipliers

Suppose that y(x) is an extremal of
b
1) = [ L@,/ 0) d
subject to the integral constraint I(y) = ¢, where
b
1) = [ MGey(a).y/ @) .

Then the extremal y(x) must be either a critical point of I(y) or else
L2 critical point of J(y) — A (y) for some Lagrange multiplier A € R.

J

@ This theorem is closely related to the corresponding theorem for the
extrema of a function f(z,y) subject to a constraint g(z,y) = c.
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Lagrange multipliers: Proof, page 1

o Let ¢, be some given test functions and define f,g: R? — R by
fle,0) =J(y+ep+dy),  g(e,0) =1y +ep+ ).
o We note that ¢(0,0) = I(y) = ¢ by assumption, while

0:(0.0) = 1 €0 =900 _y [@+e0) = 1)

e—0 IS e—0 e

=I'(y)e-
@ Suppose y(z) is not a critical point of I(y). We can then find a test
function ¢ such that I'(y)¢ # 0. According to the implicit function
theorem, we can thus find a function ¢ = ¢(d) with £(0) = 0 and
c=yg(e,6) = I(y +ep + 07)

in a neighbourhood of § = 0, namely for small enough §.
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Lagrange multipliers: Proof, page 2

e Since y(x) is an extremal of J(y) subject to the given constraint,

f(g,0) = J(y +ep+dv)

attains an extremum at (0,0) subject to the constraint g(e,d) = c.

e Using a standard calculus result, we conclude that either Vg(0,0) = 0
or else Vf(0,0) = AVg(0,0) for some A € R. One may easily exclude
the former case since g-(0,0) = I'(y)¢ # 0 by above. We thus have

Vf(O, 0) = Av9(07 0) - f5(07 0) = )‘95(0’ O)
= J(yv=A(y)Y

for all test functions 1), so y(x) is a critical point of J(y) — A (y).
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Second variation

@ The first variation of J(y) is defined as the limit

e—0 £

and one can use a Taylor series expansion to derive the formula

b
J (y)p = / (Lyp + Ly ') dx.
@ The second variation of J(y) is defined as the limit

Sy tep) - Jy) —eJ (e
1" o
S (y)p = lim I

and one can use a Taylor series expansion to derive the formula

b
J”(y)QP = / <Lyy902 + 2Lyy/‘;0§0, + Ly’y’(SOI)Q) dzx.
a
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Second variation: Sketch of proof

@ According to the definition of J(y), one has

b
J(y+ep) = J(y) = / (L(w, y+ep,y +e¢’) — Llz,y, y’)) dz.
e Denote the integrand by F'(¢). Then a Taylor series expansion gives

F(e) = s(Ly<p + Ly/<p’>
2

3
+ 9 (Lyy‘)p2 + 2Ly oy’ + Ly’y’(¢/)2> +..

where the dots indicate terms which contain higher powers of ¢.

@ Since the linear terms correspond to the first variation J'(y)y, it
easily follows that the quadratic terms correspond to J" (y)¢p.
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Necessary condition

( Theorem 3. Necessary condition

If the functional J(y) attains a local minimum at the function y(x),
then we must actually have J”(y)¢ > 0 for all functions ¢.

@ This condition resembles the second derivative test from advanced
calculus. It is closely related to the expansion

Tu+e) = ) + 2o+ ST W+

and the fact that J'(y)p = 0 for all critical points of J(y).

@ It may happen that J”(y)y > 0 for all functions ¢, even though J(y)
has no local minimum. In particular, the given condition is necessary
but not sufficient for the existence of a local minimum.

29/43



Necessary condition: Sketch of proof

@ Using the definition of J”(y)¢, one can write

g2 €2
Jy+ep)=Jy)+eJ (y)p+ EJ”(y)so + 5 Ry, )

for some remainder term R such that R(y,e,¢) — 0 as e — 0.

@ Since y(z) is a point of a local minimum, this implies that

62 82
0<J(y+ep)—J(y) = 5J”(y)s0 + SRy ¢)

for all small enough €. Letting ¢ — 0, we conclude that

1" BT 11
J"(y)e = lim (J (y)yp + R(y, ¢, w)) > 0.
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Legendre condition

( Theorem 4. Legendre condition

If the functional J(y) attains a local minimum at the function y(x),
then one has Ly (z,y,y’) > 0 throughout the interval [a, b].

@ As a simple example, consider the functional

1
J(y) = / z\/ 14y (x)% da.
-1
@ In this case, the Lagrangian L is easily seen to satisfy

o xy(x) _ T
W= Jreer WY T Gy

V1t ()

e Since Ly, changes sign on the given interval, one finds that J(y)
has neither a local minimum nor a local maximum.
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Legendre condition: Sketch of proof, page 1

e If it happens that L, < 0 at some point, then L/, < 0 on some
interval [xo — &, 20 + €] by continuity. Consider the test function

.3 ( m(z—1x0) . _ <
o(z) = sin (—E ) if |z x0.| <e |
0 otherwise

@ This function is bounded for all € > 0, but its derivative becomes
unbounded as € — 0. One thus expects the second variation

b
J”(y)@Z/ (LnyOQ+2Lyy’QOQ0/+Ly/y’(Q0/)2> dx

to become negative as € — 0. This contradicts our previous theorem
which asserts that J”(y)¢ > 0 at a point of a local minimum.

o It remains to show that J”(y)¢ < 0 for all small enough & > 0.
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Legendre condition: Sketch of proof, page 2

@ Since the Lagrangian is twice continuously differentiable, one has
xo+e ) )
1" / /
J'(y)p = / (Lyygo + 2Ly p" + Ly (') > dx
To—¢

< Ws(c 2 4 Oylod| — Ca(0)?) d
< 107+ Calpy'| 3(¢") x

0—¢€

for some constants C1, C2,C3 > 0. Letting u = Z(z — x), we get

J"(y)p < %/

—T

T 2
(Cl N 3rCy  97°Cs

sin u cos? u) du
o2

C
= 2601 + 671'02 — —4
€
for some constants C7, Co, C4 > 0 and the result now follows.
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Poincaré inequality

@ Suppose that ¢ is a test function on the interval [a,b]. Then

o) = lete) — v(@l < [ 1wl dy,

so one may use the Cauchy-Schwarz inequality to find that

/ dy/ Vdy = ( w—a)/abwl(w)Qd:v.

o Integrating over [a, b], we thus obtain the Poincaré inequality

[ o< 5P [ aara
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Sufficient condition

~

/Theorem 5. Sufficient condition

Suppose that y(z) is a critical point of

b
J(y) = / L(z,y(z),y (z)) de

subject to the boundary conditions y(a) = yo and y(b) = y1. Suppose
also that there exists some constant § > 0 such that

b
J"(y)e > 5/ ¢ (z)? dw

for all test functions ¢. Then J(y) attains a local minimum at y(x). )
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Sufficient condition: Sketch of proof, page 1

@ We use Taylor's theorem with remainder to write

2

b
9

with the second derivatives of L evaluated at a point of the form
(x,y +tep,y + tey'), 0<t<1.
@ Since L is twice continuously differentiable, this implies that
62 1
Sy +ep) =Jy) + 5 W)
22 b ) )
+ 5/ (Rlso + 2Ry’ + R3(¢') )dw
a
for some functions Ry, Ro, R3 which approach zero as ¢ — 0. We

now estimate the integral that appears on the right hand side.
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Sufficient condition: Sketch of proof, page 2

@ Let us denote the last integral by 1. We then have

I < /ab(|R1| + |R2|)<p(x)2 dx + /ab<|R2| + |R3|><p'(x)2 dx

and we can use the Poincaré inequality to conclude that

b
|| S/ R(e,z) - ¢/ (x)? da

for some positive function R which approaches zero as ¢ — 0.

@ In view of our assumption on J”(y)¢, this implies that
g2 b )
Hy+ep) = J) 25 [ 6 Blew) o@Pde 20
a
for all small enough ¢, so J(y) attains a local minimum at y(z).
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Sufficient condition: Example

o Consider the shortest path example that corresponds to the case

b
Ty) = / 1+ (@) da.

@ In this case, the critical points are lines, namely functions y(z) whose
derivative is constant, say y/'(z) = ¢. One can easily check that

Lo 1 1
y'y = (1 —|—y’(a:)2)3/2 - (1 +02)3/2 -

for some constant ¢ > 0, while L, = L,,» = 0. This implies that

b
J”(y)soz/ 5¢'(2)? dz,

so the sufficient condition is satisfied and J(y) has a local minimum.
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Invariance

o If there is a transformation (x,y) — (x4, y«) such that

b b*
/ L(z,y,y) dr = / L(x4,ys, ) dxy  for all a < b,
a QA x

we say that J(y) is invariant under the given transformation.

@ A very common example is time invariance
Ty =T+ €, Ys = Y.

This case arises whenever L is independent of x, for instance.

@ Another common example is translation invariance
Ty =T, Y« =Y + €.
This case arises whenever L is independent of y, for instance.
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Noether's theorem

(" Theorem 6. Noether’'s theorem R

Suppose J(y) is invariant under a family of transformations

(l’, y) — (l’*, y*) = (f(xa Y, 6)’ g(l‘, Y, 6))
such that z, = x and y, = y when € = 0. Then the quantity
Q= a(L-yL,)+ Ly
is independent of x whenever y(x) is a critical point of J(y) and
a * 8 *
o= a , 8= J .

9 O |.— Oe | )

@ The Beltrami identity is a very special case of this theorem.
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Noether's theorem: Sketch of proof, page 1

o We simplify the invariance condition using a Taylor series expansion
and keeping the linear terms only. This gives the identity

L(zs, s, vi) = L(z,y,y') + (2 — 2) Lo (2,9, y')
+ (s — ) Ly(@,y,9") + (ya — V') Ly (2, 9,9).

@ Let us express this identity in the more compact form
Li=L+Az-Ly+Ay-L,+Ay - Ly.
o Keeping linear terms as before, we get Az =z, — x = ae and

Ay =y.(z) —y(@) =y () — v (@) + ysu(24) — y(2)
= —y/(z)Az + Be = (B — ay)e.
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Noether's theorem: Sketch of proof, page 2

@ We now integrate the identity above. Since z, = x + ae, we have

b by
/de=/ L, dxz,

b
:/ (L+Az-Ly+Ay-Ly+ Ay - L) dz,
A%
b
:/ (L+ae-Ly+Ay-Ly+Ay - Ly +de- L) du.
a

@ Rearranging terms and integrating by parts, we conclude that

b b b d
0= / (ag- L) dx + [Ay . Ly/} +/ Ay (Ly - —Ly/) dx.
a a dx

a

@ Here, the rightmost integral is zero by the Euler-Lagrange equation.
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Noether's theorem: Sketch of proof, page 3

@ In view of our computation above, we must thus have

0= [ozz—:-L—i—Ay-Ly/]Z
= [aaL—i— (B—ay')s'Ly/]b.

a

@ Since the endpoints a, b are arbitrary, this actually means that
Q=alL+ (B—ay)Ly
is independent of x. Rearranging terms, we conclude that
Q=a(l - ylLy’) + BLy

is independent of . This finally completes the proof.
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