
Wave equation on the half line

I Dirichlet: Consider the Dirichlet problem for the wave equation

utt = c2uxx, u(x, 0) = φ(x), ut(x, 0) = ψ(x), u(0, t) = 0

on the half line x > 0. To solve this problem, one extends the initial data φ, ψ to the whole
real line in such a way that the extension is odd and then solves the corresponding problem
using d’Alembert’s formula. This approach leads to the usual formula

u(x, t) =
φ(x+ ct) + φ(x− ct)
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∫ x+ct

x−ct

ψ(s) ds, if x > ct,

while a similar formula holds in the remaining case, namely

u(x, t) =
φ(ct+ x)− φ(ct− x)
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∫ ct+x

ct−x

ψ(s) ds, if x < ct.

I Neumann: Consider the Neumann problem for the wave equation

utt = c2uxx, u(x, 0) = φ(x), ut(x, 0) = ψ(x), ux(0, t) = 0

on the half line x > 0. To solve this problem, one proceeds as above but now extends the
initial data φ, ψ to the whole real line in such a way that the extension is even.

Wave equation on a closed interval

I Dirichlet: Consider the Dirichlet problem for the wave equation

utt = c2uxx, u(x, 0) = φ(x), ut(x, 0) = ψ(x), u(0, t) = 0 = u(L, t)

on the closed interval [0, L]. Using separation of variables, one finds that

u(x, t) =
∞∑
n=1

(
an sin

nπct

L
+ bn cos

nπct

L

)
· sin nπx

L
(6.1)

satisfies both the PDE and the boundary conditions. To ensure that the initial conditions
are also satisfied, we choose the coefficients an, bn as follows. When t = 0, we need to have

φ(x) =
∞∑
n=1

bn sin
nπx

L
=⇒ bn =

2

L

∫ L

0

sin
nπx

L
· φ(x) dx (6.2)

by the uniqueness of Fourier coefficients, and we similarly need to have

ψ(x) =
∞∑
n=1

nπc

L
· an sin

nπx

L
=⇒ an =

2

nπc

∫ L

0

sin
nπx

L
· ψ(x) dx. (6.3)

Thus, the solution is given by (6.1), where an and bn are given by the last two equations.


