Wave equation on the half line

» Dirichlet: Consider the Dirichlet problem for the wave equation

Uy = gy, u(z,0) = p(x), u(x,0) = (x), u(0,t) =0

on the half line z > 0. To solve this problem, one extends the initial data ¢, to the whole
real line in such a way that the extension is odd and then solves the corresponding problem
using d’Alembert’s formula. This approach leads to the usual formula
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u(z,t) = YP(s)ds, it x > ct,
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while a similar formula holds in the remaining case, namely

o(ct +z)—plct —x) 1 [
_|_ J—
2 2c

u(z,t) = P(s)ds, if © <ct.
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» Neumann: Consider the Neumann problem for the wave equation
Ut = CPUyy, u(z,0) = p(x), w(z,0) = (x), uz(0,8) =0

on the half line x > 0. To solve this problem, one proceeds as above but now extends the
initial data ¢, to the whole real line in such a way that the extension is even.

Wave equation on a closed interval

» Dirichlet: Consider the Dirichlet problem for the wave equation

Ut = C2u$1‘a u(x, O) = 90(1:)’ ut(xv O) = 77/)(11/’), U(O,t) =0= U(Lvt)

on the closed interval [0, L]. Using separation of variables, one finds that
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satisfies both the PDE and the boundary conditions. To ensure that the initial conditions
are also satisfied, we choose the coefficients a,,, b, as follows. When ¢t = 0, we need to have

o(z) = ; by, sin ? = b, = E/o sin ? ~o(x) dz (6.2)
by the uniqueness of Fourier coefficients, and we similarly need to have
Y(x) = i ITC apsin 2 — g, = 2 Lsin nr U(x)dx (6.3)
B L " L " nme J, L ' '
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Thus, the solution is given by (6.1), where a,, and b,, are given by the last two equations.



