Wave equation: initial value problem

Theorem 1 (Formulas). Every solution of the wave equation $u_{tt} = c^2 u_{xx}$ has the form

$$u(x,t) = F(x-ct) + G(x+ct)$$

for some functions F, G. In particular, the initial value problem on the real line

$$u_{tt} = c^2 u_{xx}, \qquad u(x,0) = \varphi(x), \qquad u_t(x,0) = \psi(x)$$
 (5.1)

has a unique solution which is given by d'Alembert's formula

$$u(x,t) = \frac{\varphi(x+ct) + \varphi(x-ct)}{2} + \frac{1}{2c} \int_{x-ct}^{x+ct} \psi(s) \, ds.$$
(5.2)

Definition 2 (Classical solutions). We say that a function is of class C^k or simply C^k , if its *k*th-order derivatives are all continuous. A solution of a PDE is said to be classical, if it is C^k , where k is the order of the PDE. When it comes to the Cauchy problem (5.1), a classical solution must be C^2 , so such solutions exist only when $\varphi \in C^2$ and $\psi \in C^1$.

Definition 3 (L^{∞} norm). Given a bounded function f on \mathbb{R}^n , we define its L^{∞} norm by

$$||f||_{\infty} = \sup_{x \in \mathbb{R}^n} |f(x)|.$$

It is easy to check that this is a norm on L^{∞} , the space of all bounded functions on \mathbb{R}^n .

Definition 4 (Well-posed). A problem involving a PDE is called well-posed, if it has a unique solution and if that solution is stable with respect to some norm.

Theorem 5 (Stability for the wave equation). Let u_1 be the unique solution of the Cauchy problem (5.1) with initial data φ_1, ψ_1 and let u_2 be the unique solution with initial data φ_2, ψ_2 . Then the difference of these two solutions satisfies the estimate

$$|u_1(x,t) - u_2(x,t)| \le ||\varphi_1 - \varphi_2||_{\infty} + t \cdot ||\psi_1 - \psi_2||_{\infty}$$

at all points (x, t). Thus, the Cauchy problem (5.1) is well-posed on [0, T] for any T > 0.