
Proofs of the main results

1. Homework 2, Problem 3 is quite similar. The main idea is to factor the PDE as

0 = (∂2t − c2∂2x)u = (∂t + c∂x)(∂t − c∂x)u.

If we can find variables v, w such that ∂v = ∂t + c∂x and ∂w = ∂t − c∂x, then

0 = ∂v∂wu =⇒ ∂wu = F1(w) =⇒ u = F2(w) + F3(v).

To actually find these variables v and w, we note that

∂v = tv∂t + xv∂x, ∂w = tw∂t + xw∂x

by the chain rule, while ∂v = ∂t + c∂x and ∂w = ∂t − c∂x by above. This gives

tv = tw = 1, xv = c, xw = −c

so we can let t = v + w and x = cv − cw. Solving for v and w, we conclude that

x+ ct = 2cv, x− ct = −2cw =⇒ u = F (x− ct) +G(x+ ct).

2. We wish to find the unique solution of the initial value problem

utt = c2uxx, u(x, 0) = φ(x), ut(x, 0) = ψ(x).

Using the general form for solutions of the wave equation, we then get

u(x, t) = F (x+ ct) +G(x− ct), ut(x, t) = cF ′(x+ ct)− cG′(x− ct)

for some functions F,G. To ensure that the initial conditions hold, we need to have

φ(x) = F (x) +G(x), ψ(x) = cF ′(x)− cG′(x).

Integrating the rightmost equation gives the equivalent system

F (x) +G(x) = φ(x), F (x)−G(x) =
1

c

∫ x

0

ψ(s) ds.

Adding and subtracting these two equations, it is then easy to see that

F (x) =
φ(x)

2
+

1

2c

∫ x

0

ψ(s) ds, G(x) =
φ(x)

2
− 1

2c

∫ x

0

ψ(s) ds.

In particular, the unique solution of the initial value problem is given by

u(x, t) = F (x+ ct) +G(x− ct) =
φ(x+ ct) + φ(x− ct)

2
+

1

2c

∫ x+ct

x−ct

ψ(s) ds.
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3. Those are four different problems. See Homework 2, Problem 1 for the wave equation
with even initial data and Homework 3, Problem 7 for the heat equation with even
initial data; the remaining two problems are quite similar.

4. Those are four different problems. See Homework 2, Problem 2 for the wave equation
with Neumann boundary conditions and Homework 3, Problem 2 for the heat equation
with Dirichlet boundary conditions; the remaining two problems are quite similar.

5. Those are two different problems, but they are almost identical. Define the energy by

E(t) =
1

2

∫ L

0

ut(x, t)
2 + c2ux(x, t)

2 dx =
1

2

∫ L

0

u2t + c2u2x dx.

To show this is conserved for solutions of the wave equation utt = c2uxx, note that

E ′(t) =

∫ L

0

ututt + c2uxuxt dx =

∫ L

0

c2utuxx + c2uxuxt dx.

Integrating one of the two integrals by parts, we now get

E ′(t) =
[
c2utux

]L
x=0

−
∫ L

0

c2uxtux dx+

∫ L

0

c2uxuxt dx

=
[
c2utux

]L
x=0

.

For the Neumann problem, ux = 0 on the boundary and we get E ′(t) = 0, indeed. For
the Dirichlet problem, u = 0 on the boundary at all times, so ut = 0 on the boundary
and the same conclusion holds.

6. Suppose that u1, u2 are both solutions of the boundary value problem

utt = c2uxx, u(x, 0) = φ(x), ut(x, 0) = ψ(x)

on [0, L] subject to either Dirichlet or Neumann conditions. Then w = u1−u2 satisfies

wtt = c2wxx, w(x, 0) = wt(x, 0) = 0

subject to the same boundary conditions. Using conservation of energy, we now get∫ L

0

wt(x, t)
2 + c2wx(x, t)

2 dx =

∫ L

0

wt(x, 0)
2 + c2wx(x, 0)

2 dx.

Since both wt and wx are initially zero by above, the last equation implies∫ L

0

wt(x, t)
2 + c2wx(x, t)

2 dx = 0 =⇒ wt(x, t) = wx(x, t) = 0

at all times. This means that w(x, t) is constant; being initially zero, it must thus be
zero at all times and so u1, u2 are identical.
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7. Let u1 be the solution of the wave equation when the initial data φ1, ψ1 are imposed
and let u2 be the solution for the initial data φ2, ψ2. We need to show that u1 and u2
remain close at all times, if they are initially close. By d’Alembert’s formula,

u1(x, t) =
φ1(x+ ct) + φ1(x− ct)

2
+

1

2c

∫ x+ct

x−ct

ψ1(s) ds

and a similar formula holds for u2; subtracting these two formulas now gives

u1(x, t)− u2(x, t) =
φ1(x+ ct)− φ2(x+ ct)

2
+
φ1(x− ct)− φ2(x− ct)

2

+
1

2c

∫ x+ct

x−ct

ψ1(s)− ψ2(s) ds.

Letting ||f ||∞ denote the L∞ norm of a function f , we deduce that

|u1(x, t)− u2(x, t)| ≤
||φ1 − φ2||∞

2
+

||φ1 − φ2||∞
2

+
1

2c

∫ x+ct

x−ct

||ψ1 − ψ2||∞ ds

= ||φ1 − φ2||∞ + t · ||ψ1 − ψ2||∞.

To prove stability, let ε > 0 be given and suppose the initial data are so close that

||φ1 − φ2||∞ ≤ ε

2
, ||ψ1 − ψ2||∞ ≤ ε

2T
.

Combining the last two equations, we then get

|u1(x, t)− u2(x, t)| ≤
ε

2
+

tε

2T
≤ ε =⇒ ||u1 − u2||∞ ≤ ε.

8. Statement. Suppose u satisfies the heat equation ut = kuxx in some closed, bounded
region A in the xt-plane. Then both the minimum and the maximum values of u are
attained on the boundary of A.

Proof. Fix some ε > 0 and let v(x, t) = u(x, t) + εx2. If v attains its maximum at an
interior point, then vt = 0 and vxx ≤ 0 at that point, so vt − kvxx ≥ 0 there. Since

vt − kvxx = (ut − kuxx)− 2kε = −2kε < 0

at all points, however, the maximum of v is attained on the boundary. Using the fact
that A is a bounded region, we now find

v(x, t) = u(x, t) + εx2 ≤ max
∂A

u+ Cε

at all points on the boundary, hence also at all points. Letting ε→ 0, this gives

u(x, t) ≤ max
∂A

u

at all points, so the maximum of u is also attained on the boundary. Since

minu = −max(−u)

and −u itself satisfies the heat equation, minu is attained on the boundary as well.
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9. First of all, let us invoke the explicit formula for the solution, which gives

u(x, t) =

∫ ∞

−∞
S(x− y, t) · u(y, 0) dy.

Since the heat kernel S(x, t) is non-negative, we then have

|u(x, t)| ≤
∫ ∞

−∞
S(x− y, t) · |u(y, 0)| dy

=

∫ ∞

−∞
S(x− y, t)

1
q · S(x− y, t)

1
p |u(y, 0)| dy

whenever 1
p
+ 1

q
= 1. Using Hölder’s inequality to estimate the integral, we get

|u(x, t)| ≤
[∫ ∞

−∞
S(x− y, t)

1
q
·q dy

]1/q [∫ ∞

−∞
S(x− y, t)

1
p
·p |u(y, 0)|p dy

]1/p
and the expression in the first pair of brackets is equal to 1, so

|u(x, t)|p ≤
∫ ∞

−∞
S(x− y, t) |u(y, 0)|p dy.

Integrating with respect to x and using Fubini’s theorem, we conclude that∫ ∞

−∞
|u(x, t)|p dx ≤

∫ ∞

−∞

∫ ∞

−∞
S(x− y, t) |u(y, 0)|p dy dx

=

∫ ∞

−∞
|u(y, 0)|p

∫ ∞

−∞
S(x− y, t) dx dy

=

∫ ∞

−∞
|u(y, 0)|p dy.

10. Statement. The average value of a harmonic function u over a sphere is equal to its
value at the centre. In other words, one has

u(x) =
1

nαnrn−1

∫
|y−x|=r

u(y) dSy

for all x ∈ Rn and all r > 0, where αn is the volume of the unit ball in Rn.

Proof. Suppose u(x) is harmonic and let I(x, r) be its mean value over the sphere of
radius r around the point x ∈ Rn. Then we have

I(x, r) =
1

nαnrn−1

∫
|y−x|=r

u(y) dSy
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and we can change variables by z = y−x
r

to get

I(x, r) =
1

nαnrn−1

∫
|z|=1

u(x+ rz) rn−1dSz =
1

nαn

∫
|z|=1

u(x+ rz) dSz.

Differentiating this expression with respect to r, one finds that

Ir(x, r) =
1

nαn

∫
|z|=1

∇u(x+ rz) · z dSz =
1

nαn

∫
|z|=1

∇u(x+ rz) · n dSz,

where n is the outward unit normal vector on the sphere |z| = 1. Using the divergence
theorem together with the fact that u is harmonic, we thus get

Ir(x, r) =
1

nαn

∫
|z|≤1

∇ · ∇u(x+ rz) dz =
1

nαn

∫
|z|≤1

∆u(x+ rz) dz = 0.

This shows that the mean value I(x, r) is independent of the radius r of the sphere.
Letting r → 0 makes the sphere shrink down to a point, so it easily follows that

I(x, r) = lim
r→0

I(x, r) = u(x).

11. Statement. If a function u is harmonic in some closed, bounded region A ⊂ Rn, then
both the min and the max values of u are attained on the boundary.

Proof. Suppose the maximum M is attained at an interior point x. Let r > 0 be the
distance of x from the boundary and let S ⊂ A be the sphere of radius r around x.
By the mean value property for harmonic functions over spheres, we must then have

M = u(x) =
1

nαnrn−1

∫
S

u(y) dSy ≤
1

nαnrn−1

∫
S

M dSy =M.

Thus, equality holds in the inequality above and u(y) =M at all points on the sphere.
Since that includes points on the boundary, the maximum is attained there. Since

minu = −max(−u)

and −u is harmonic as well, the minimum of u is also attained on the boundary.

12. Pick any function G(x) which is non-negative, radial and smooth with∫
Rn

G(x) dx = 1.

To see that such a function exists, let S(x, t) be the heat kernel and define

G(x) = S(x1, 1) · S(x2, 1) · . . . · S(xn, 1) =
1

(4kπ)n/2
· exp

(
−|x|2

4k

)
.
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We claim that u(x) is equal to the convolution G(x) ∗ u(x). In fact, we have

G(x) ∗ u(x) =
∫
Rn

G(x− y)u(y) dy

=

∫ ∞

0

∫
|x−y|=r

G(r)u(y) dSy dr

because G is radial, so the mean value property for harmonic functions gives

G(x) ∗ u(x) = u(x)

∫ ∞

0

G(r) · nαnr
n−1 dr,

where αn is the volume of the unit ball in Rn. Since the last integral is equal to∫ ∞

0

G(r) · nαnr
n−1 dr =

∫ ∞

0

∫
|z|=r

G(z) dSz dr =

∫
Rn

G(x) dx = 1

by assumption, we have actually shown that

u(x) = G(x) ∗ u(x) =
∫
Rn

G(x− y)u(y) dy.

Using this equation and the fact that G is smooth, we find that u is also smooth.

13. Statement. If u : Rn → R is C1 and v : Rn → R is C2, then one has∫
A

u∆v dx = −
∫
A

∇u · ∇v dx+
∫
∂A

u∇v · n dS.

If u, v are both C2, then one similarly has∫
A

(u∆v − v∆u) dx =

∫
∂A

(u∇v − v∇u) · n dS.

Proof. According to the product rule, the divergence of u∇v = ⟨uvx1 , . . . , uvxn⟩ is

∇ · (u∇v) =
n∑

i=1

(uvxi
)xi

=
n∑

i=1

uxi
vxi

+ uvxixi
= ∇u · ∇v + u∆v.

We now integrate over A and apply the divergence theorem to get∫
∂A

u∇v · n dS =

∫
A

∇u · ∇v dx+
∫
A

u∆v dx.

This is Green’s first identity. Interchanging the roles of u, v also gives∫
∂A

v∇u · n dS =

∫
A

∇u · ∇v dx+
∫
A

v∆u dx,

so we may subtract the last two equations to obtain Green’s second identity.
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14. There are two different ways to prove uniqueness; see Homework 4, Problem 8.

15. Suppose u is harmonic and bounded. Then ∆u = 0 and u is smooth, so

∆uxi
= 0 =⇒ uxi

(x) =
1

αnrn

∫
|y−x|≤r

uxi
(y) dy

by the mean value property for harmonic functions. Now, uxi
is the divergence of the

vector F whose ith entry is equal to u, all other entries being zero. This gives

uxi
(x) =

1

αnrn

∫
|y−x|≤r

∇ · F (y) dy =
1

αnrn

∫
|y−x|=r

F (y) · n dSy

because of the divergence theorem. Since n is a unit vector and u bounded, we get

|uxi
(x)| ≤ 1

αnrn

∫
|y−x|=r

||u||∞ dSy =
||u||∞
αnrn

· nαnr
n−1 =

n||u||∞
r

.

This inequality holds for any r > 0, so we can let r → ∞ to find that uxi
is zero at all

points. In particular, u is independent of each xi and must thus be constant.

16. We have to prove the identity

−
∫
R3

F (x)∆φ(x) dx = φ(0)

for all test functions φ. Let us then fix some ε > 0 and write

−
∫
R3

F (x)∆φ(x) dx = −
∫
|x|≤ε

F (x)∆φ(x) dx−
∫
|x|≥ε

F (x)∆φ(x) dx.

Since F is harmonic in the region |x| ≥ ε, Green’s second identity gives

−
∫
|x|≥ε

F∆φdx =

∫
|x|=ε

(φ∇F − F∇φ) · n dSx,

where n = −x/ε is the outward unit normal vector. This allows us to write

−
∫
R3

F∆φdx = −
∫
|x|≤ε

F∆φdx+

∫
|x|=ε

φ∇F · n dSx −
∫
|x|=ε

F∇φ · n dSx

= I1 + I2 + I3

as the sum of three integrals. When it comes to the first integral, we have

|I1| ≤
∫
|x|≤ε

||∆φ||∞
4π|x|

dx = C

∫ ε

0

∫
|x|=ρ

ρ−1dSx dρ
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and the surface of the sphere |x| = ρ is equal to 4πρ2, so

|I1| ≤ C

∫ ε

0

ρ dρ = Cε2

and I1 → 0 as ε→ 0. When it comes to the third integral, we similarly get

|I3| ≤
∫
|x|=ε

||∇φ||∞
4π|x|

dSx = C

∫
|x|=ε

ε−1dSx = Cε

so I3 → 0 as ε→ 0. Once we now combine these observations, we arrive at

−
∫
R3

F∆φdx = lim
ε→0

∫
|x|=ε

φ∇F · n dSx.

Using the explicit formulas for F (x) and n = −x/ε, it is easy to check that

∇F (x) · n =
1

4πε|x|
.

Since the sphere |x| = ε has surface 4πε2, we may finally conclude that

−
∫
R3

F∆φdx = lim
ε→0

1

4πε2

∫
|x|=ε

φ(x) dSx = φ(0).

17. Statement. Suppose A ⊂ Rn is bounded and f : Rn → R a given function. Out of all
functions that satisfy u(x) = f(x) on ∂A, the one that minimizes

I(u) =

∫
A

|∇u|2 dx

is the one which is harmonic within A.

Proof. Suppose u(x) = v(x) on the boundary and let w = u− v. Then we have

I(u) =

∫
A

|∇v +∇w|2 dx =

∫
A

(∇v +∇w) · (∇v +∇w) dx

=

∫
A

|∇v|2 + 2∇v · ∇w + |∇w|2 dx.

Using Green’s identity and the fact that w = 0 on the boundary, we also get∫
A

∇v · ∇w dx = −
∫
A

w∆v dx+

∫
∂A

w∇v · n dS = −
∫
A

w∆v dx.

If we now assume that v is harmonic, then this integral vanishes and so

I(u) =

∫
A

|∇v|2 + |∇w|2 dx ≥
∫
A

|∇v|2 dx = I(v).
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18. The proof is similar to that of the mean value property. First, we write

U(x, t, r) =
1

nαnrn−1

∫
|y−x|=r

u(y, t) dSy =
1

nαn

∫
|z|=1

u(x+ rz, t) dSz

using the substitution z = y−x
r
, and then we differentiate to get

Ur(x, t, r) =
1

nαn

∫
|z|=1

∇u(x+ rz, t) · z dSz

=
1

nαnrn−1

∫
|y−x|=r

∇u(y, t) · n dSy,

where n = z is the outward unit normal vector on the sphere |y − x| = r. Using the
divergence theorem and the fact that u satisfies the wave equation, we now find

Ur(x, t, r) =
1

nαnrn−1

∫
|y−x|≤r

∆u(y, t) dy

=
1

nαnrn−1c2

∫
|y−x|≤r

utt(y, t) dy.

Next, we switch to polar coordinates and we write

rn−1Ur(x, t, r) =
1

nαnc2

∫ r

0

∫
|y−x|=ρ

utt(y, t) dSy dρ.

Differentiating with respect to r and using the definition of U , we arrive at

(n− 1)rn−2Ur + rn−1Urr =
1

nαnc2

∫
|y−x|=r

utt(y, t) dSy =
rn−1Utt

c2
.

Once we now solve for Utt, we deduce the desired identity, namely

Utt = c2
(
n− 1

r
· Ur + Urr

)
.

19. Since u is a weak solution of ut + F (u)x = 0, it must satisfy the equation∫ ∞

0

∫ ∞

−∞
[uφt + F (u)φx] dx dt = 0 (1)

for any test function φ which vanishes when t = 0. Now, consider the vector

F =

[
uφ

F (u)φ

]
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whose divergence is given by

∇ · F = (uφ)t + (F (u)φ)x = [ut + F (u)x]φ+ [uφt + F (u)φx].

Integrating over the region A− defined by x < h(t), one finds∫
∂A−

F · n dS =

∫
A−

[uφt + F (u)φx] dx dt+

∫
A−

[ut + F (u)x]φdx dt,

where n = ⟨n1, n2⟩ is the outward unit normal vector to A−. Since u is smooth in A−

by assumption, it is a classical solution there and the rightmost integral vanishes. If
we now denote by A+ the region x > h(t), then the same argument gives

−
∫
∂A+

F · n dS =

∫
A+

[uφt + F (u)φx] dx dt+

∫
A+

[ut + F (u)x]φdx dt

and the rightmost integral is zero. Using the last two equations and (1), we now get∫
x=h(t)

(
u−n1 + F (u−)n2

)
φdS =

∫
x=h(t)

(
u+n1 + F (u+)n2

)
φdS

for all test functions φ which vanish when t = 0. This is easily seen to imply

F (u+)− F (u−)

u+ − u−
= −n1

n2

= h′(t)

because the vector v = ⟨n2,−n1⟩ is tangent to the curve x = h(t).
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