PDEs, Homework #5
Solutions

. Consider the function u: R — R defined by

[0 ifz<0
u(x)_{sinx z'fxzo}'

Show that u" + u = § in the sense of distributions. Hint: you need to show that

/_00 u(x)" () dr + /00 u(z)p(z) dz = p(0)

oo —00

for all test functions ; simplify the first integral and then integrate by parts.

Using the definition of v and an integration by parts, we find

/OO u(x)e" (x) de = /OOO ¢"(z)sinx dr = — /Ooo o/ () cos z dz

o0

because ¢'(x) sin z vanishes at the two endpoints. Integrating by parts again,
/ u(z)p" (z) de = —/ o(x)sinx dr — [gp(x) cos x]
- 0

_ /_ " p(@)ule) dz + (0)

o0

and this implies the desired identity

(" +u, ) = / " ulw) (@) d + / u(a)p(r) dz = o(0) = (5, ).

—00 — 00

. Consider the heat equation u; = kAu over a bounded region A C R"™ subject to zero
Dirichlet boundary conditions. Show that each solution has a decreasing L?>-norm:

pr Au(x,t)2 dx <0

at all times. Hint: differentiate, use the PDE and then use Green’s identities.

Following the hint, let us first differentiate to get
d
—/ u(z,t)* dr = 2/ uuy dr = Qk/ uAudz.
dt )4 A A
Using Green’s first identity and the fact that « = 0 on the boundary, we find

— | u(z,t)’ do = —2k/ Vu-Vudr = —Qk/ |Vul?dx < 0.
dt Ja A A



. Let u(x,t) be a compactly supported solution of the wave equation uy = Au. Show that
its energy E(t) is conserved, where

E(t) = /n uy(x,t)* + |Vu(z, t)]? da.

The computation is similar to that for the one-dimensional problem. We write

E(t) = / ul + Zui dx
R i=1

for simplicity and then we differentiate to get

E'(t) = / 2ty + Z 20, Uy dx = / 2u Au + Z 20y, U,y A

n

i=1 =1

Integrating one of these integrals by parts, we conclude that

E'(t) = / 2u Ay — Z 2y, ;0 dr = 0.

i=1
. Consider the initial value problem for the Burgers’ equation

up + uuy =0, u(z,0) = f(x) (BE)
when f(x) =sinz. Show that u is bounded at all times, whereas u, is not.
As usual, one has the formula u = f(zo) = f(z — ut) along characteristics, so

u= f(x —ut) = sin(x — ut)
is certainly bounded. To see that u, is not bounded, we note that
Uy = cos(x — ut) - (x — ut), = cos(x — ut) - (1 — tuy,)

by the chain rule. Solving for u, and recalling that zy = x — ut, we then get

_cos(wr—ut)  cosxg
"~ 1+tcos(w —ut) 1-+tcosxg

Ug

If xy = m, for instance, then u, = —1/(1 — t) becomes unbounded as t — 1.



5. Solve the initial value problem for the Burgers’ equation (BE) when f(x) = —1/x.

e First of all, we use the standard formula u = f(x — ut) to get

u= f(r—ut)=— = tu—au—1=0.

T —ut
This quadratic equation has two solutions which are given by

_q:j:\/a:’2+4t

Y 2t

Since the denominator vanishes when ¢ = 0, the numerator must also do, hence
rEVe?=0 = ZLlz|=—x.
This means that the correct sign is + when z < 0 and — when x > 0, namely

z+vVx2+4 .
vzt rdt 2t+t if z<0
u(z,t) =

R

In particular, the solution has a jump discontinuity along x = 0 because

Vit Vit

lim w(z,t) = —, lim wu(z,t) = ——.
z—0~ 2t x—07t 2t

Since the average of the two limits is zero, the Rankine-Hugoniot condition does hold
and our solution is the unique weak solution of the problem.

6. Solve the initial value problem for the Burgers’ equation (BE) when f is the function
defined by f(x) =1 ifx <0 and f(x) =0 if z > 0.
e We use the standard formula u = f(z) = f(x — ut) and distinguish two cases.
Case 1. If x(y < 0, then we have u =1 and also xrg =2 —t < 0.
Case 2. If g > 0, then we have u = 0 and also zqg = = > 0.
At any point with 0 < = < ¢, we must thus have 1 = v = 0, a contradiction. This

shows that no classical solutions exist. Looking for a weak solution of the form

W)= o |

we get h/(t) = 1/2 by the Rankine-Hugoniot condition. Since the curve = h(t) must
pass through the point x = 0 when ¢ = 0, it easily follows that h(t) = t/2.



. Consider the initial value problem
w+g(wu, =0, u(z,0) = f(z).
Show that some characteristic curves will intersect, unless g(f(x)) is increasing.

Suppose ¢g(f(x)) is not increasing. Then there exist points x; < x2 such that

9(f (1)) > g(f(x2)).

To find the characteristic curve that passes through (z;,0), we solve the system

dt dx du
& ot ot
ds ’ ds 9(u), ds 0

subject to the initial condition u(z;,0) = f(z;); this gives
t=s, u= f(x;), x=g(u)s+ x; = g(f(z;))t + x;.
Thus, the curve passing through (z,0) will intersect the one through (x5, 0) when

gF@ttar=gf@tite: = t= _mrs— ma >0,

. Let a > 0 be fized. Solve the initial value problem (BE) in the case that

a ifx <0
flz)=¢ a(l—2) if0<z<l
0 ifr>1

We use the standard formula u = f(z¢) = f(z — ut) and distinguish three cases.
Case 1. If ¢y <0, then we have u = a and also o = x — at < 0.
Case 2. If g > 1, then we have u = 0 and also g =z > 1.

Case 3. If 0 < 2y < 1, then we have u = a(1 — x¢) and also

o=z —at(l—xz) = 1—xg=1—z+at(l—x)
a(l —z)

= u=a(l—xz9) = It

Putting these facts together, we find that the solution is given by

a if x <at
u(z,t) = “(:I) ifat <z <1
0 ifx>1




Now, this classical solution is only defined up to time ¢ = 1/a. After that time, the
characteristic curves start to intersect one another, so no classical solution exists. Let
us then look for a weak solution of the form

_foa if z<h(t)
W””‘{o if 2> ht) }
Since h/(t) = a/2 by the Rankine-Hugoniot condition, we easily get

1
— My=5+C = nn="7

W(t) = 5

(NCR S

because the curve = h(t) must pass through the point 2 = 1 when t = 1/a.



