
PDEs, Homework #5
Solutions

1. Consider the function u : R → R defined by

u(x) =

{
0 if x < 0

sin x if x ≥ 0

}
.

Show that u′′ + u = δ in the sense of distributions. Hint: you need to show that∫ ∞

−∞
u(x)φ′′(x) dx+

∫ ∞

−∞
u(x)φ(x) dx = φ(0)

for all test functions φ; simplify the first integral and then integrate by parts.

• Using the definition of u and an integration by parts, we find∫ ∞

−∞
u(x)φ′′(x) dx =

∫ ∞

0

φ′′(x) sin x dx = −
∫ ∞

0

φ′(x) cos x dx

because φ′(x) sinx vanishes at the two endpoints. Integrating by parts again,∫ ∞

−∞
u(x)φ′′(x) dx = −

∫ ∞

0

φ(x) sin x dx−
[
φ(x) cos x

]∞
x=0

= −
∫ ∞

−∞
φ(x)u(x) dx+ φ(0)

and this implies the desired identity

⟨u′′ + u, φ⟩ =
∫ ∞

−∞
u(x)φ′′(x) dx+

∫ ∞

−∞
u(x)φ(x) dx = φ(0) = ⟨δ, φ⟩.

2. Consider the heat equation ut = k∆u over a bounded region A ⊂ Rn subject to zero
Dirichlet boundary conditions. Show that each solution has a decreasing L2-norm:

d

dt

∫
A

u(x, t)2 dx ≤ 0

at all times. Hint: differentiate, use the PDE and then use Green’s identities.

• Following the hint, let us first differentiate to get

d

dt

∫
A

u(x, t)2 dx = 2

∫
A

uut dx = 2k

∫
A

u∆u dx.

Using Green’s first identity and the fact that u = 0 on the boundary, we find

d

dt

∫
A

u(x, t)2 dx = −2k

∫
A

∇u · ∇u dx = −2k

∫
A

|∇u|2 dx ≤ 0.



3. Let u(x, t) be a compactly supported solution of the wave equation utt = ∆u. Show that
its energy E(t) is conserved, where

E(t) =

∫
Rn

ut(x, t)
2 + |∇u(x, t)|2 dx.

• The computation is similar to that for the one-dimensional problem. We write

E(t) =

∫
Rn

u2
t +

n∑
i=1

u2
xi
dx

for simplicity and then we differentiate to get

E ′(t) =

∫
Rn

2ututt +
n∑

i=1

2uxi
uxit dx =

∫
Rn

2ut∆u+
n∑

i=1

2uxi
uxit dx.

Integrating one of these integrals by parts, we conclude that

E ′(t) =

∫
Rn

2ut∆u−
n∑

i=1

2uxixi
ut dx = 0.

4. Consider the initial value problem for the Burgers’ equation

ut + uux = 0, u(x, 0) = f(x) (BE)

when f(x) = sin x. Show that u is bounded at all times, whereas ux is not.

• As usual, one has the formula u = f(x0) = f(x− ut) along characteristics, so

u = f(x− ut) = sin(x− ut)

is certainly bounded. To see that ux is not bounded, we note that

ux = cos(x− ut) · (x− ut)x = cos(x− ut) · (1− tux)

by the chain rule. Solving for ux and recalling that x0 = x− ut, we then get

ux =
cos(x− ut)

1 + t cos(x− ut)
=

cos x0

1 + t cosx0

.

If x0 = π, for instance, then ux = −1/(1− t) becomes unbounded as t → 1.



5. Solve the initial value problem for the Burgers’ equation (BE) when f(x) = −1/x.

• First of all, we use the standard formula u = f(x− ut) to get

u = f(x− ut) = − 1

x− ut
=⇒ tu2 − xu− 1 = 0.

This quadratic equation has two solutions which are given by

u =
x±

√
x2 + 4t

2t
.

Since the denominator vanishes when t = 0, the numerator must also do, hence

x±
√
x2 = 0 =⇒ ±|x| = −x.

This means that the correct sign is + when x < 0 and − when x > 0, namely

u(x, t) =


x+

√
x2+4t
2t

if x < 0

x−
√
x2+4t
2t

if x > 0

 .

In particular, the solution has a jump discontinuity along x = 0 because

lim
x→0−

u(x, t) =

√
4t

2t
, lim

x→0+
u(x, t) = −

√
4t

2t
.

Since the average of the two limits is zero, the Rankine-Hugoniot condition does hold
and our solution is the unique weak solution of the problem.

6. Solve the initial value problem for the Burgers’ equation (BE) when f is the function
defined by f(x) = 1 if x < 0 and f(x) = 0 if x > 0.

• We use the standard formula u = f(x0) = f(x− ut) and distinguish two cases.

Case 1. If x0 < 0, then we have u = 1 and also x0 = x− t < 0.

Case 2. If x0 > 0, then we have u = 0 and also x0 = x > 0.

At any point with 0 < x < t, we must thus have 1 = u = 0, a contradiction. This
shows that no classical solutions exist. Looking for a weak solution of the form

u(x, t) =

{
1 if x < h(t)
0 if x > h(t)

}
,

we get h′(t) = 1/2 by the Rankine-Hugoniot condition. Since the curve x = h(t) must
pass through the point x = 0 when t = 0, it easily follows that h(t) = t/2.



7. Consider the initial value problem

ut + g(u)ux = 0, u(x, 0) = f(x).

Show that some characteristic curves will intersect, unless g(f(x)) is increasing.

• Suppose g(f(x)) is not increasing. Then there exist points x1 < x2 such that

g(f(x1)) > g(f(x2)).

To find the characteristic curve that passes through (xi, 0), we solve the system

dt

ds
= 1,

dx

ds
= g(u),

du

ds
= 0

subject to the initial condition u(xi, 0) = f(xi); this gives

t = s, u = f(xi), x = g(u)s+ xi = g(f(xi))t+ xi.

Thus, the curve passing through (x1, 0) will intersect the one through (x2, 0) when

g(f(x1))t+ x1 = g(f(x2))t+ x2 =⇒ t =
x2 − x1

g(f(x1))− g(f(x2))
> 0.

8. Let a > 0 be fixed. Solve the initial value problem (BE) in the case that

f(x) =


a if x ≤ 0

a(1− x) if 0 < x < 1
0 if x ≥ 1

 .

• We use the standard formula u = f(x0) = f(x− ut) and distinguish three cases.

Case 1. If x0 ≤ 0, then we have u = a and also x0 = x− at ≤ 0.

Case 2. If x0 ≥ 1, then we have u = 0 and also x0 = x ≥ 1.

Case 3. If 0 < x0 < 1, then we have u = a(1− x0) and also

x0 = x− at(1− x0) =⇒ 1− x0 = 1− x+ at(1− x0)

=⇒ u = a(1− x0) =
a(1− x)

1− at
.

Putting these facts together, we find that the solution is given by

u(x, t) =


a if x ≤ at

a(1−x)
1−at

if at < x < 1

0 if x ≥ 1

 .



Now, this classical solution is only defined up to time t = 1/a. After that time, the
characteristic curves start to intersect one another, so no classical solution exists. Let
us then look for a weak solution of the form

u(x, t) =

{
a if x < h(t)
0 if x > h(t)

}
.

Since h′(t) = a/2 by the Rankine-Hugoniot condition, we easily get

h′(t) =
a

2
=⇒ h(t) =

at

2
+ C =⇒ h(t) =

at+ 1

2

because the curve x = h(t) must pass through the point x = 1 when t = 1/a.


