
PDEs, Homework #4
Solutions

1. Show that the average value of a harmonic function over a ball is equal to its value at
the centre. In other words, show that a harmonic function u satisfies

u(x) =
1

αnrn

∫
|y−x|≤r

u(y) dy

for all x ∈ Rn and all r > 0, where αn is the volume of the unit ball in Rn. Hint: write
the integral in polar coordinates and use the mean value property for spheres.

• Let I(x, r) denote the average value of u over the ball of radius r around x. Then

I(x, r) =
1

αnrn

∫
|y−x|≤r

u(y) dy =
1

αnrn

∫ r

0

∫
|y−x|=t

u(y) dSy dt

and we can use the mean value property for spheres to get

I(x, r) =
1

αnrn

∫ r

0

nαnt
n−1u(x) dt =

nu(x)

rn

∫ r

0

tn−1 dt = u(x).

2. Suppose that A ⊂ Rn is a bounded region and that u : Rn → R satisfies

∆u(x) = λu(x) when x ∈ A, u(x) = 0 when x ∈ ∂A.

Show that u must be identically zero, if λ ≥ 0. Hint: write down Green’s identity for
the integral of u∆u and then simplify.

• Following the hint, let us first use Green’s identity to write∫
A

u∆u dx = −
∫
A

∇u · ∇u dx+

∫
∂A

u∇u · n dS.

Since ∆u = λu within A and u = 0 on the boundary, it easily follows that∫
A

λu2 dx = −
∫
A

|∇u|2 dx = −
n∑

i=1

∫
A

u2
xi
dx.

Here, the left hand side is non-negative, whereas the right hand side is non-positive.
This means they must both be zero, so each uxi

is identically zero and u is constant.
Given that u = 0 on the boundary, we conclude that u = 0 at all points.

3. Show that H ′ = δ in the sense of distributions, where H is the Heaviside function

H(x) =

{
0 if x < 0
1 if x ≥ 0

}
.



• Assuming that φ is a smooth function of compact support, we get

⟨H ′, φ⟩ = −⟨H,φ′⟩ = −
∫ ∞

−∞
H(x)φ′(x) dx.

In view of the definition of H, this also implies that

⟨H ′, φ⟩ = −
∫ ∞

0

φ′(x) dx =
[
−φ(x)

]∞
x=0

= φ(0) = ⟨δ, φ⟩.

4. We say that u : Rn → R is subharmonic, if ∆u(x) ≥ 0 for all x ∈ Rn. Show that u2 is
subharmonic whenever u is harmonic.

• To show that v = u2 is subharmonic, we note that vxi
= 2uuxi

and that

vxixi
= 2uxi

uxi
+ 2uuxixi

=⇒ ∆v = 2|∇u|2 + 2u∆u = 2|∇u|2 ≥ 0.

5. Find all harmonic functions u(x, y) which have the form u(x, y) = F (x/y).

• Differentiating u(x, y) = F (x/y) twice, one finds that

ux = F ′(x/y) · (1/y) =⇒ uxx = F ′′(x/y) · (1/y)2,

while a similar computation gives

uy = F ′(x/y) · (−x/y2) =⇒ uyy = F ′′(x/y) · (−x/y2)2 + F ′(x/y) · (2x/y3).

In particular, u(x, y) is harmonic if and only if

0 = uxx + uyy = F ′′(x/y) · x
2 + y2

y4
+ F ′(x/y) · 2x

y3
.

Multiplying through by y2 and setting z = x/y, one can write this equation as

F ′′(z)(z2 + 1) + 2zF ′(z) = 0 =⇒ F ′′(z) = −2zF ′(z)

z2 + 1
.

Since this is a separable ODE, we can now separate variables to get

F ′′(z)

F ′(z)
= − 2z

z2 + 1
=⇒ logF ′(z) = C0 − log(z2 + 1)

=⇒ F ′(z) = C1(z
2 + 1)−1.

In particular, F (z) = C1 arctan z + C2 and thus u(x, y) = C1 arctan(x/y) + C2.



6. Find the unique solution u(x, y) of the Dirichlet problem

uxx + uyy = 0 when x2 + y2 < a2, u(x, y) = g(x, y) when x2 + y2 = a2.

• Consider, more generally, the n-dimensional Dirichlet problem

∆u(x) = 0 when |x| < r, u(x) = g(x) when |x| = r. (1)

Changing variables by w(x) = u(rx), one finds that w satisfies

∆w(x) = 0 when |x| < 1, w(x) = g(rx) when |x| = 1 (2)

if and only if u satisfies (1). We already know that the solution of (2) is given by

w(x) =
1− |x|2

nαn

∫
|y|=1

g(ry)

|x− y|n
dSy,

the standard Poisson formula. In particular, the solution of (1) is given by

u(x) = w(x/r) =
1− |x/r|2

nαn

∫
|y|=1

g(ry)

|x/r − y|n
dSy

and we can now change variables by z = ry to conclude that

u(x) =
r2 − |x|2

nαnr2

∫
|z|=r

rng(z)

|x− z|n
dSz

rn−1
=

r2 − |x|2

nαnr

∫
|z|=r

g(z)

|x− z|n
dSz.

7. Solve uxx+uyy = 1 in the annulus a2 ≤ x2+ y2 ≤ b2 subject to zero Dirichlet boundary
conditions. Hint: looking for radial solutions, one ends up with an ODE.

• Let us look for radial solutions, say u(x, y) = F (x2 + y2), in which case

ux = 2xF ′(x2 + y2) =⇒ uxx = 2F ′(x2 + y2) + (2x)2F ′′(x2 + y2),

uy = 2yF ′(x2 + y2) =⇒ uyy = 2F ′(x2 + y2) + (2y)2F ′′(x2 + y2).

Adding these two equations and setting z = x2 + y2 for convenience, we now get

uxx + uyy = 1 ⇐⇒ 4F ′(z) + 4zF ′′(z) = 1 ⇐⇒ 4zF ′(z) = z + C0

⇐⇒ F ′(z) =
1

4
+

C1

z
⇐⇒ F (z) =

z

4
+ C1 log z + C2.

For the boundary conditions to hold, F (z) should vanish when z = a2, b2 and so

a2

4
+ 2C1 log a+ C2 = 0 =

b2

4
+ 2C1 log b+ C2.



Solving for C1 and C2, one finds that

C1 =
b2 − a2

8 log(a/b)
, C2 = −a2

4
− 2C1 log a.

In particular, the desired solution is given by

u(x, y) =
x2 + y2

4
+

(b2 − a2) log(x2 + y2)

8 log(a/b)
+

a2 log b− b2 log a

4 log(a/b)
.

8. Given a bounded region A ⊂ Rn, show that the Dirichlet problem

∆u(x) = f(x) when x ∈ A, u(x) = g(x) when x ∈ ∂A

has at most one solution. Give one proof using the maximum principle and one using
Green’s first identity. Hint: if u, v are solutions, then w = u − v is harmonic, so its
min/max values are attained on ∂A; use Green’s identity for the integral of w∆w.

• First, we use the maximum principle. If u, v are both solutions, then w = u − v is
harmonic and also zero on the boundary. Moreover, a harmonic function attains both
its min and its max on the boundary, so w = 0 at all points and u = v at all points.

• We now give a proof using Green’s identity. If u, v are both solutions, then w = u− v
is harmonic and also zero on the boundary. By Green’s identity then, we have∫

A

w∆w dx = −
∫
A

∇w · ∇w dx+

∫
∂A

w∇w · n dS,

where both the leftmost and the rightmost integrals are zero. This implies∫
A

∇w · ∇w dx = 0 =⇒
n∑

i=1

∫
A

w2
xi
dx = 0,

so w is constant. Given that w = 0 on the boundary, we get w = 0 at all points.

9. Suppose u is harmonic in the unit disc x2 + y2 ≤ 1 and such that u(x, y) = x2 on the
boundary x2 + y2 = 1. Determine the value of u at the origin.

• The value of u at the origin is equal to the mean value over any circle (sphere) around
the origin. Looking at the circle of radius 1 around the origin, we now find

u(0, 0) =
1

2π

∫
x2+y2=1

u(x, y) dS =
1

2π

∫ 2π

0

cos2 θ dθ

=
1

4π

∫ 2π

0

[1 + cos 2θ] dθ =
1

2
.



10. Find the unique bounded solution of the Laplace equation uxx + uyy = 0 in the upper
half plane y ≥ 0 subject to the boundary condition u(x, 0) = signx.

• According to the Poisson formula, the unique bounded solution is given by

u(x, y) =
y

π

∫ ∞

−∞

u(z, 0) dz

(x− z)2 + y2

=
y

π

∫ ∞

0

dz

(x− z)2 + y2
− y

π

∫ 0

−∞

dz

(x− z)2 + y2
.

Using the substitution w = z−x
y

to simplify these integrals, we now get

u(x, y) =
1

π

∫ ∞

−x/y

dw

w2 + 1
− 1

π

∫ −x/y

−∞

dw

w2 + 1

=

[
arctanw

π

]∞
−x/y

−
[
arctanw

π

]−x/y

−∞
.

In particular, we get

u(x, y) =
π/2

π
− 2 arctan(−x/y)

π
+

−π/2

π
=

2arctan(x/y)

π
.


