
PDEs, Homework #3
Solutions

1. Use Hölder’s inequality to show that the solution of the heat equation

ut = kuxx, u(x, 0) = φ(x) (HE)

goes to zero as t → ∞, if φ is continuous and bounded with φ ∈ Lp for some p ≥ 1.
Hint: you will need to compute the Lq norm of the heat kernel for some q ≥ 1.

• The solution of the initial value problem (HE) is given by the formula

u(x, t) =

∫ ∞

−∞
S(x− y, t) · φ(y) dy,

where S is the heat kernel. According to Hölder’s inequality then, we have

|u(x, t)| ≤ ||S(x− y, t)||q · ||φ(y)||p

whenever 1
p
+ 1

q
= 1. To compute the Lq norm of the heat kernel, we write

||S(x− y, t)||qq =
∫ ∞

−∞
S(x− y, t)q dy

=
1

(4kπt)q/2

∫ ∞

−∞
exp

(
−(x− y)2

4kt
· q
)
dy

and we make an obvious change of variables to get

||S(x− y, t)||qq =
(4kt/q)1/2

(4kπt)q/2

∫ ∞

−∞
e−z2dz =

(4kπt/q)1/2

(4kπt)q/2
= Ct

1−q
2 .

If p > 1, then q = p
p−1

> 1 and the last equation gives

lim
t→∞

||S(x− y, t)||q = lim
t→∞

Ct
1−q
2q = 0.

If p = 1, on the other hand, then q = ∞ and we have

S(x− y, t) =
1√
4kπt

· exp
(
−(x− y)2

4kt

)
≤ 1√

4kπt
.

Taking the limit as t → ∞, we reach the same conclusion as before, namely

lim
t→∞

||S(x− y, t)||∞ = 0.



2. Solve the Dirichlet problem for the heat equation on the half line. In other words, find
the solution to (HE) when x > 0 and the boundary condition u(0, t) = 0 is imposed for
all t ≥ 0. Hint: argue as for the Neumann problem but use an odd extension.

• Extend φ to the whole real line in such a way that the extension is odd. Then the
solution of the initial value problem on the whole real line is

u(x, t) =

∫ ∞

−∞
S(x− y, t)φext(y) dy

=

∫ ∞

0

S(x− y, t)φ(y) dy −
∫ 0

−∞
S(x− y, t)φ(−y) dy.

Changing variables by z = −y in the second integral, we now get

u(x, t) =

∫ ∞

0

[
S(x− z, t)− S(x+ z, t)

]
φ(z) dz.

3. Use a substitution of the form v(x, t) = eatu(x, t) to solve the initial value problem

ut − kuxx = bu, u(x, 0) = φ(x)

when b is a constant. Hint: if a is chosen suitably, then v satisfies the heat equation.

• Following the hint, let v(x, t) = eatu(x, t) and note that v satisfies

vt − kvxx = aeatu+ eatut − keatuxx

= eat(au+ ut − kuxx)

= eat(a+ b)u.

If we take a = −b, then we end up with the heat equation and this implies

v(x, t) =

∫ ∞

−∞
S(x− y, t)φ(y) dy =⇒ u(x, t) = ebt

∫ ∞

−∞
S(x− y, t)φ(y) dy.

4. Show that the heat equation (HE) preserves positivity: if the initial temperature φ(x)
is non-negative for all x, then the temperature u(x, t) is non-negative for all x, t. Show
that the same is true for the associated Dirichlet problem on the interval [0, L]. Hint:
the first part is easy; use the maximum principle to prove the second part.

• When it comes to the initial value problem on the real line, it is clear that

u(x, t) =
1√
4kπt

∫ ∞

−∞
exp

(
−(x− y)2

4kt

)
· φ(y) dy

is non-negative, if φ is. When it comes to the Dirichlet problem on [0, L], we use the
maximum principle to see that the minimum value of u is attained on one of the three
sides x = 0, x = L and t = 0. Since u = 0 on the first two sides and u = φ on the
third, the minimum value is non-negative and so u ≥ minu ≥ 0.



5. Solve the initial value problem (HE) in the case φ(x) = eax for some a ∈ R. Hint:
the solution is given by a messy integral; if you complete the square and use a suitable
substitution, then you will end up with the standard integral involving e−z2.

• The solution of the initial value problem is given by the formula

u(x, t) =
1√
4kπt

∫ ∞

−∞
exp

(
−(x− y)2

4kt
+ ay

)
dy

=
1√
4kπt

exp

(
− x2

4kt

)∫ ∞

−∞
exp

(
− y2

4kt
+

2xy

4kt
+ ay

)
dy.

In order to simplify this formula, we now complete the square and we write

− y2

4kt
+

2xy

4kt
+ ay = − 1

4kt

(
y2 − 2y(x+ 2akt)

)
= − 1

4kt

(
y − (x+ 2akt)

)2

+
(x+ 2akt)2

4kt
.

Changing variables by z = y−x−2akt√
4kt

and simplifying, we conclude that

u(x, t) =
1√
4kπt

exp(ax+ a2kt)

∫ ∞

−∞
exp

(
−(y − x− 2akt)2

4kt

)
dy

=
1√
π

exp(ax+ a2kt)

∫ ∞

−∞
e−z2dz

= exp(ax+ a2kt).

6. Prove uniqueness of solutions for the Neumann problem

ut = kuxx, u(x, 0) = φ(x), ux(0, t) = 0 = ux(L, t). (NP)

Hint: if u, v are both solutions, then E(t) =
∫ L

0
[u(x, t)− v(x, t)]2 dx is decreasing.

• Following the hint, set w = u− v and consider the energy

E(t) =

∫ L

0

w(x, t)2 dx =⇒ E ′(t) =

∫ L

0

2wwt dx.

Since w is itself a solution of the heat equation, one easily gets

E ′(t) =

∫ L

0

2kwwxx dx = −
∫ L

0

2kw2
x dx ≤ 0

using an integration by parts. In particular, E(t) is decreasing and so∫ L

0

w(x, t)2 dx = E(t) ≤ E(0) =

∫ L

0

w(x, 0)2 dx = 0.

Since the leftmost integral is non-negative, this implies w(x, t) = 0 at all points.



7. Show that the solution to (HE) is even in x, if the initial datum φ(x) is even.

• To show that w(x, t) = u(−x, t) is also a solution, we note that

wt(x, t) = ut(−x, t) = kuxx(−x, t) = kwxx(x, t)

and that w(x, t) satisfies the initial condition

w(x, 0) = u(−x, 0) = φ(−x) = φ(x).

Since the initial value problem has a unique solution, this gives u(−x, t) = u(x, t).

8. Show that the non-homogeneous heat equation on the real line

ut − kuxx = f(x, t), u(x, 0) = φ(x)

has a unique solution which is given by Duhamel’s formula

u(x, t) =

∫ ∞

−∞
S(x− y, t)φ(y) dy +

∫ t

0

∫ ∞

−∞
S(x− y, t− τ)f(y, τ) dy dτ.

• If two solutions exist, then their difference satisfies the homogeneous problem subject
to zero initial data, so it is zero by uniqueness. Thus, at most one solution exists and
we need only check that Duhamel’s formula gives a solution. Let us first focus on

w(x, t) =

∫ t

0

∫ ∞

−∞
S(x− y, t− τ)f(y, τ) dy dτ, (1)

namely the second term in Duhamel’s formula. We note that

wt(x, t) =

∫ ∞

−∞
S(x− y, 0)f(y, t) dy +

∫ t

0

∫ ∞

−∞
St(x− y, t− τ)f(y, τ) dy dτ (2)

and that the leftmost integral resembles the usual convolution formula with the heat
kernel. In order to simplify this integral, we relate it to some other heat equation as
follows. Suppose t ≥ 0 is fixed and consider the initial value problem

Us(x, s) = kUxx(x, s), U(x, 0) = f(x, t).

Using the explicit formula for the solution of this heat equation, we then get

U(x, s) =

∫ ∞

−∞
S(x− y, s)U(y, 0) dy =

∫ ∞

−∞
S(x− y, s)f(y, t) dy

and we can substitute s = 0 to arrive at∫ ∞

−∞
S(x− y, 0)f(y, t) dy = U(x, 0) = f(x, t).



This allows us to simplify the leftmost integral in equation (2), so we find

wt(x, t) = f(x, t) +

∫ t

0

∫ ∞

−∞
St(x− y, t− τ)f(y, τ) dy dτ

= f(x, t) +

∫ t

0

∫ ∞

−∞
kSxx(x− y, t− τ)f(y, τ) dy dτ

= f(x, t) + kwxx(x, t).

In particular, the rightmost integral in Duhamel’s formula is a solution of

wt − kwxx = f(x, t), w(x, 0) = 0

and the leftmost integral in Duhamel’s formula is a solution of

vt − kvxx = 0, v(x, 0) = φ(x).

Adding these two equations, we conclude that their sum u = v + w satisfies

ut − kuxx = f(x, t), u(x, 0) = φ(x).

9. Show that the average temperature T (t) =
∫ L

0
u(x, t) dx is conserved for each solution

of the Neumann problem (NP). State the most general boundary conditions for which
the average temperature is conserved.

• According to the fundamental theorem of calculus, one has

T ′(t) =

∫ L

0

ut(x, t) dx =

∫ L

0

kuxx(x, t) dx =
[
kux(x, t)

]L
x=0

.

Thus, the average temperature is conserved, as long as ux(0, t) = ux(L, t) at all times.


