PDEs, Homework #2
Solutions

1. Show that the solution u(x,t) of the initial value problem
Uy = gy, u(z,0) = p(x), u(z,0) = (x) (WE)
is even in x, if the initial data p,v are even. Hint: show u(—z,t) is also a solution.

e To show that w(x,t) = u(—=x,t) is also a solution, we note that
Wy (1) = Uy (—2,1) = Cge(—2,1) = Cwee(z, 1)
and that w(z,t) satisfies the initial conditions

w(z,0) = u(—,0) = p(—z) = p(z),
wy(z,0) = w(—x,0) = Y(—x) = P(z).

Since the initial value problem has a unique solution, this implies u(z,t) = u(—z,t).

2. Solve the Neumann problem for the wave equation on the half line. That is, find the
solution to (WE) when x > 0 and the boundary condition u,(0,t) = 0 is imposed for
allt > 0. Hint: arque as for the Dirichlet problem but use an even extension.

e Extend the initial data ¢, to the whole real line in such a way that the extension is
even. Then the solution to the Cauchy problem on the whole real line is

oxt (T — ) + Qext (T + T 1 [t
u(x,t) = Pext ) 5 Posa ) + % Yext () ds
x—ct

and we need to express this in terms of ¢, 1. When = > ct, we get the usual formula

x—ct)+o(r+ct 1 et
u(z,t) = il ) 5 il ) + % ¥(s)ds
x—ct

because x & ct are both positive. When 0 < = < ¢t, only = + ct is positive and so

olct —z) + oz +ct

u(z,t) = 5

) 1 0 z+ct
+ — [/ P(—s)ds + (s) ds} :
2c Tz—ct 0
Making the substitution » = —s in the first integral, we conclude that

u(z,t) = plet —2) + plet +2) + 2% [/dei/}(r) dr + OCHI P(r) dr] .
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. Find all solutions uw = u(x,y) of the second-order equation uy, + 4y, + 3u,, = 0.

First of all, let us factor the given PDE and write
0 = (92 + 40,0, + 302 )u = (9, + 0,)(0: + 30, )u.
If we can find variables v, w such that 0, = 0, + 9, and 9,, = 0, + 30,, then
0=0,0,u = Oyu=F(w) = u=F(w)+ F3v).
To actually find the variables v and w, we note that
Oy = 20y + Yy 0y, Ow = T0y + Y0y
by the chain rule, while 0, = 0, + 9, and 0,, = 0, + 30, by above. This gives
Ty = Yo = Ty = 1, Yo =3
so we can let x = v+ w and y = v + 3w. Solving for v and w, we conclude that

y—x = 2w, Jr—y=2v = u=Fly—z)+GBz—y).

. Show that the solution to the wave equation (WE) need not remain bounded at all
times, even though it is initially bounded. Hint: take the initial data to be constant.

Suppose that p(x) = ¢ (z) = 1, for instance. Then the corresponding solution is

1 1 1 x+ct
u(:c,t):%—i—% ds=1+t
xr—ct

by d’Alembert’s formula, so the solution does not remain bounded at all times.
. Solve the wave equation (WE) in the case that p(z) = 2 and ¥(z) = x + 1.

According to d’Alembert’s formula, the solution is given by

u(z,t) = (s +1)ds.

(x+ct)>+ (x—ct)> 1 /”Ct
_'_ J—
2 2c

r—ct

When it comes to the integral on the right hand side, one easily finds that

/Wt (x4 ct)’ — (z — ct)?

(s+1)ds = 5 + 2ct = 2cat + 2ct.

—ct

Using this fact and a little bit of algebra, we conclude that

u(w,t) = 2% + (ct)® + at +t.



. Suppose that a < b and consider the Cauchy problem (WE) in the case that

B 1 difa<z<b
p(r) = d(r) = { 0 otherwise } '

Compute the limit tlim u(z,t) for each fized x € R.
—00
According to d’Alembert’s formula, the solution is given by

ol —ct)+o(x+ct) 1 [*F
u(z,t) = 5 + %

P(s) ds.

r—ct

Since z € R is fixed, we have x 4+ ¢t — +o00 as t — oo, and this implies

I -
lim u(z,t) / U(s :—/ds:b ¢
t—o0 2c a 2c

. Solve the following non-homogeneous wave equation on the real line:

Uy — gy = t, u(z,0) = 22, u(z,0) = 1.

According to Duhamel’s formula, the solution is given by

t2 o t2 1 r+ct x+c(t—T)
u(:z:,t):<x+c) + (o =cl) —i——/ ds+—// Tdyd’]'.

2 2c

When it comes to the rightmost integral, one easily finds that

z+c(t—T) t 72 -3 t 3
/ / y ’ /0 T( T> ! |i 2 3 }TZO 6

Using this fact and simplifying the remaining terms, we conclude that
3

t
u(z,t) ::L'Q—l—(ct)Z—l—t—l—g.

. Use the substitution v(z,t) = eMu(x,t) to solve the initial value problem
Ugp — Ugy + 20Uy + N0 = 0, u(z,0) = p(x), u(z,0) = (x)

on the real line. Hint: you should find that v satisfies the wave equation vy = Vyy.

At At

Letting v = e*u, we have v,, = eMu,, and also v, = AeMu + eMu,, hence

Vg — Vgw = (A2eMu + 20eMuy + eMuy) — Mg,

= M\ + 2y F Uy — Ugy).



10.

According to the given PDE, this expression is zero and so v(z,t) satisfies

Vit = Vsg, v(x,0) = p(z), ve(z,0) = Ap(x) + ().
Solving this problem using d’Alembert’s formula with ¢ = 1, we now find

o(r+1t) +o(r —1t) I/Ht
+_

v(z,t) = 5 5 Ap(s) +1(s) ds.

Thus, the solution to the original problem is given by

—t

T+t

e.t) = S5 [ela 04 ola =0+ [ Al + o) as]

. Consider the wave equation with damping uy — Uy, + dus = 0 on the real line. Show

that the energy is decreasing for all classical solutions of compact support, if d > 0.

Suppose u is a classical solution of compact support and consider the energy

E(t) == /_OO uy(z,t)? + Cug(w,t)? do.

o0

Since u is C? by assumption, the integrand is C* and we have

E,<t> = / Uy + 02U$U$t dx

:/ Uy (Pl — duty) dx—l—/ gy dr.

Integrating by parts and using the fact that u, vanishes at x = +00, we now get

E'(t) = / uy (Ptigy — duy) da —/ Appty d

—00 —0o0

:—d/ ufd:EgO.

o0

Solve the Cauchy problem (WE) on the half line x > 0 when ¢(x) = ¢(x) = 1 and
the Dirichlet condition u(0,t) = 0 is imposed for all t > 0. Is your solution a classical
one? Hint: there are different formulas for the cases x > ct and x < ct.

When x > ct, the solution is given by d’Alembert’s formula
o(z + ct) + p(x — ct) N 1ot

u(z,t) = 5 2 ) (s)ds =1+t.
When 0 < x < ct, on the other hand, it is given by the formula
o(ct+x)—@(ct—x) 1 [ x
t) = — ds = —.
u(z,t) 5 T2 ) Y(s)ds =

Since these two expressions do not agree when x = ct, the solution is not continuous
along the line x = ct, so it is certainly not a classical solution.



11. Find the eigenfunctions and eigenvalues of —0> subject to Neumann boundary condi-
tions on [0, L]. That is, find all nonzero functions F(x) and all A € R such that

—F"(z) = \F(z), F'(0) = F'(L) = 0.

e First of all, we multiply the given ODE by F(z) and then integrate to get

)\/L F(z)*dr = — /L F"(z)F(x)dx = /L F'(z)? dx.
0 0 0
Since the leftmost integral is positive, this implies A > 0. If A = 0, then we have

F'(zx)=0 = F'(2)=0 = F(x)=C.
If A = m? is positive, on the other hand, then we have

F'(z) = —m?F(z) == F(x)= C;sin(mz) + Cycos(mz).
In this case, the boundary condition £’(0) = 0 gives
F'(z) = mC cos(mz) — mCqysin(mz) = 0=mC(Cy,

while the boundary condition F'(L) = 0 gives

0=F'(L)=—mCysin(mL) = mL=kr
for some integer k. In particular, we have m = k7 /L for some integer k, so

kmx

Fie) = o) = Cros (). 2= (47

12. Solve the wave equation uy = 4u,, on the interval [0, 7] subject to the conditions

u(z,0) = cosz, u(z,0) =1, u(0,t) = 0 = u(m,t).

e The solution of the Dirichlet problem for the wave equation uy = c*ug, on [0, L] is

> nmct nmct nmwx
u(x,t)zZ(ansin 72 + b, cos 72 )-sin%,

n=1

where the coefficients a,,, b, are given by the formula

2 [* 2 [*
ap, = — sin 0L () de, b, = —/ sin 1L o(x) du.
nmwe Jo L L J,



In this case, we have ¢ = 2 and L = 7, so the coefficients a,, are

1 [7 1-—
a, = — [ sin(nz)dr = —Cc;s(mr)
nt Jo n?m

To compute the coefficients b,,, one can integrate by parts to get

2 [T 2 T
b, = —/ sin(nx) cosx dx = il cos(nz) sin x dz
T Jo T Jo

and then integrate by parts again to arrive at

2 T 2 2 ™
b, = ik [COS(HZL‘) Ccos :E] + 2 sin(nz) cos x dx.
T o 7 Jo

This standard argument expresses b, in terms of b,, so it actually gives

_ 2n 9 _ 2nfcos(nm) + 1]
bn——7T [cos(mr)—i—l}%—n by, = by= T = 1)

whenever n # 1; the remaining case n = 1 can now be treated directly, as

™

T 1
by = —/ sinxcosxdr = — [(sinx)Q} = 0.
0

™ ™ 0



