
PDEs, Homework #2
Solutions

1. Show that the solution u(x, t) of the initial value problem

utt = c2uxx, u(x, 0) = φ(x), ut(x, 0) = ψ(x) (WE)

is even in x, if the initial data φ, ψ are even. Hint: show u(−x, t) is also a solution.

• To show that w(x, t) = u(−x, t) is also a solution, we note that

wtt(x, t) = utt(−x, t) = c2uxx(−x, t) = c2wxx(x, t)

and that w(x, t) satisfies the initial conditions

w(x, 0) = u(−x, 0) = φ(−x) = φ(x),

wt(x, 0) = ut(−x, 0) = ψ(−x) = ψ(x).

Since the initial value problem has a unique solution, this implies u(x, t) = u(−x, t).

2. Solve the Neumann problem for the wave equation on the half line. That is, find the
solution to (WE) when x > 0 and the boundary condition ux(0, t) = 0 is imposed for
all t ≥ 0. Hint: argue as for the Dirichlet problem but use an even extension.

• Extend the initial data φ, ψ to the whole real line in such a way that the extension is
even. Then the solution to the Cauchy problem on the whole real line is

u(x, t) =
φext(x− ct) + φext(x+ ct)

2
+

1

2c

∫ x+ct

x−ct

ψext(s) ds

and we need to express this in terms of φ, ψ. When x > ct, we get the usual formula

u(x, t) =
φ(x− ct) + φ(x+ ct)

2
+

1

2c

∫ x+ct

x−ct

ψ(s) ds

because x± ct are both positive. When 0 < x < ct, only x+ ct is positive and so

u(x, t) =
φ(ct− x) + φ(x+ ct)

2
+

1

2c

[∫ 0

x−ct

ψ(−s) ds+
∫ x+ct

0

ψ(s) ds

]
.

Making the substitution r = −s in the first integral, we conclude that

u(x, t) =
φ(ct− x) + φ(ct+ x)

2
+

1

2c

[∫ ct−x

0

ψ(r) dr +

∫ ct+x

0

ψ(r) dr

]
.



3. Find all solutions u = u(x, y) of the second-order equation uxx + 4uxy + 3uyy = 0.

• First of all, let us factor the given PDE and write

0 = (∂2x + 4∂x∂y + 3∂2y)u = (∂x + ∂y)(∂x + 3∂y)u.

If we can find variables v, w such that ∂v = ∂x + ∂y and ∂w = ∂x + 3∂y, then

0 = ∂v∂wu =⇒ ∂wu = F1(w) =⇒ u = F2(w) + F3(v).

To actually find the variables v and w, we note that

∂v = xv∂x + yv∂y, ∂w = xw∂x + yw∂y

by the chain rule, while ∂v = ∂x + ∂y and ∂w = ∂x + 3∂y by above. This gives

xv = yv = xw = 1, yw = 3

so we can let x = v + w and y = v + 3w. Solving for v and w, we conclude that

y − x = 2w, 3x− y = 2v =⇒ u = F (y − x) +G(3x− y).

4. Show that the solution to the wave equation (WE) need not remain bounded at all
times, even though it is initially bounded. Hint: take the initial data to be constant.

• Suppose that φ(x) = ψ(x) = 1, for instance. Then the corresponding solution is

u(x, t) =
1 + 1

2
+

1

2c

∫ x+ct

x−ct

ds = 1 + t

by d’Alembert’s formula, so the solution does not remain bounded at all times.

5. Solve the wave equation (WE) in the case that φ(x) = x2 and ψ(x) = x+ 1.

• According to d’Alembert’s formula, the solution is given by

u(x, t) =
(x+ ct)2 + (x− ct)2

2
+

1

2c

∫ x+ct

x−ct

(s+ 1) ds.

When it comes to the integral on the right hand side, one easily finds that∫ x+ct

x−ct

(s+ 1) ds =
(x+ ct)2 − (x− ct)2

2
+ 2ct = 2cxt+ 2ct.

Using this fact and a little bit of algebra, we conclude that

u(x, t) = x2 + (ct)2 + xt+ t.



6. Suppose that a < b and consider the Cauchy problem (WE) in the case that

φ(x) = ψ(x) =

{
1 if a ≤ x ≤ b
0 otherwise

}
.

Compute the limit lim
t→∞

u(x, t) for each fixed x ∈ R.

• According to d’Alembert’s formula, the solution is given by

u(x, t) =
φ(x− ct) + φ(x+ ct)

2
+

1

2c

∫ x+ct

x−ct

ψ(s) ds.

Since x ∈ R is fixed, we have x± ct→ ±∞ as t→ ∞, and this implies

lim
t→∞

u(x, t) =
1

2c

∫ ∞

−∞
ψ(s) ds =

1

2c

∫ b

a

ds =
b− a

2c
.

7. Solve the following non-homogeneous wave equation on the real line:

utt − c2uxx = t, u(x, 0) = x2, ut(x, 0) = 1.

• According to Duhamel’s formula, the solution is given by

u(x, t) =
(x+ ct)2 + (x− ct)2

2
+

1

2c

∫ x+ct

x−ct

ds+
1

2c

∫ t

0

∫ x+c(t−τ)

x−c(t−τ)

τ dy dτ.

When it comes to the rightmost integral, one easily finds that

1

2c

∫ t

0

τ

∫ x+c(t−τ)

x−c(t−τ)

dy dτ =

∫ t

0

τ(t− τ) dτ =

[
τ 2t

2
− τ 3

3

]t
τ=0

=
t3

6
.

Using this fact and simplifying the remaining terms, we conclude that

u(x, t) = x2 + (ct)2 + t+
t3

6
.

8. Use the substitution v(x, t) = eλtu(x, t) to solve the initial value problem

utt − uxx + 2λut + λ2u = 0, u(x, 0) = φ(x), ut(x, 0) = ψ(x)

on the real line. Hint: you should find that v satisfies the wave equation vtt = vxx.

• Letting v = eλtu, we have vxx = eλtuxx and also vt = λeλtu+ eλtut, hence

vtt − vxx = (λ2eλtu+ 2λeλtut + eλtutt)− eλtuxx

= eλt(λ2u+ 2λut + utt − uxx).



According to the given PDE, this expression is zero and so v(x, t) satisfies

vtt = vxx, v(x, 0) = φ(x), vt(x, 0) = λφ(x) + ψ(x).

Solving this problem using d’Alembert’s formula with c = 1, we now find

v(x, t) =
φ(x+ t) + φ(x− t)

2
+

1

2

∫ x+t

x−t

λφ(s) + ψ(s) ds.

Thus, the solution to the original problem is given by

u(x, t) =
e−λt

2

[
φ(x+ t) + φ(x− t) +

∫ x+t

x−t

λφ(s) + ψ(s) ds

]
.

9. Consider the wave equation with damping utt − c2uxx + dut = 0 on the real line. Show
that the energy is decreasing for all classical solutions of compact support, if d > 0.

• Suppose u is a classical solution of compact support and consider the energy

E(t) =
1

2

∫ ∞

−∞
ut(x, t)

2 + c2ux(x, t)
2 dx.

Since u is C2 by assumption, the integrand is C1 and we have

E ′(t) =

∫ ∞

−∞
ututt + c2uxuxt dx

=

∫ ∞

−∞
ut(c

2uxx − dut) dx+

∫ ∞

−∞
c2uxuxt dx.

Integrating by parts and using the fact that ux vanishes at x = ±∞, we now get

E ′(t) =

∫ ∞

−∞
ut(c

2uxx − dut) dx−
∫ ∞

−∞
c2uxxut dx

= −d
∫ ∞

−∞
u2t dx ≤ 0.

10. Solve the Cauchy problem (WE) on the half line x > 0 when φ(x) = ψ(x) = 1 and
the Dirichlet condition u(0, t) = 0 is imposed for all t ≥ 0. Is your solution a classical
one? Hint: there are different formulas for the cases x > ct and x ≤ ct.

• When x > ct, the solution is given by d’Alembert’s formula

u(x, t) =
φ(x+ ct) + φ(x− ct)

2
+

1

2c

∫ x+ct

x−ct

ψ(s) ds = 1 + t.

When 0 < x < ct, on the other hand, it is given by the formula

u(x, t) =
φ(ct+ x)− φ(ct− x)

2
+

1

2c

∫ ct+x

ct−x

ψ(s) ds =
x

c
.

Since these two expressions do not agree when x = ct, the solution is not continuous
along the line x = ct, so it is certainly not a classical solution.



11. Find the eigenfunctions and eigenvalues of −∂2x subject to Neumann boundary condi-
tions on [0, L]. That is, find all nonzero functions F (x) and all λ ∈ R such that

−F ′′(x) = λF (x), F ′(0) = F ′(L) = 0.

• First of all, we multiply the given ODE by F (x) and then integrate to get

λ

∫ L

0

F (x)2 dx = −
∫ L

0

F ′′(x)F (x) dx =

∫ L

0

F ′(x)2 dx.

Since the leftmost integral is positive, this implies λ ≥ 0. If λ = 0, then we have

F ′′(x) = 0 =⇒ F ′(x) = 0 =⇒ F (x) = C.

If λ = m2 is positive, on the other hand, then we have

F ′′(x) = −m2F (x) =⇒ F (x) = C1 sin(mx) + C2 cos(mx).

In this case, the boundary condition F ′(0) = 0 gives

F ′(x) = mC1 cos(mx)−mC2 sin(mx) =⇒ 0 = mC1,

while the boundary condition F ′(L) = 0 gives

0 = F ′(L) = −mC2 sin(mL) =⇒ mL = kπ

for some integer k. In particular, we have m = kπ/L for some integer k, so

F (x) = C2 cos(mx) = C2 cos

(
kπx

L

)
, λ = m2 =

(
kπ

L

)2

.

12. Solve the wave equation utt = 4uxx on the interval [0, π] subject to the conditions

u(x, 0) = cosx, ut(x, 0) = 1, u(0, t) = 0 = u(π, t).

• The solution of the Dirichlet problem for the wave equation utt = c2uxx on [0, L] is

u(x, t) =
∞∑
n=1

(
an sin

nπct

L
+ bn cos

nπct

L

)
· sin nπx

L
,

where the coefficients an, bn are given by the formula

an =
2

nπc

∫ L

0

sin
nπx

L
· ψ(x) dx, bn =

2

L

∫ L

0

sin
nπx

L
· φ(x) dx.



In this case, we have c = 2 and L = π, so the coefficients an are

an =
1

nπ

∫ π

0

sin(nx) dx =
1− cos(nπ)

n2π
.

To compute the coefficients bn, one can integrate by parts to get

bn =
2

π

∫ π

0

sin(nx) cosx dx = −2n

π

∫ π

0

cos(nx) sin x dx

and then integrate by parts again to arrive at

bn =
2n

π

[
cos(nx) cos x

]π
0
+

2n2

π

∫ π

0

sin(nx) cos x dx.

This standard argument expresses bn in terms of bn, so it actually gives

bn = −2n

π

[
cos(nπ) + 1

]
+ n2bn =⇒ bn =

2n[cos(nπ) + 1]

π(n2 − 1)

whenever n ̸= 1; the remaining case n = 1 can now be treated directly, as

b1 =
2

π

∫ π

0

sin x cos x dx =
1

π

[
(sin x)2

]π
0
= 0.


